What drives the recent surge in inflation? The historical decomposition roller coaster.

Drago Bergholt[†], Fabio Canova^{‡,*},

Francesco Furlanetto^{†,‡}, Nicolò Maffei-Faccioli[†], Pål Ulvedal^{†,*}

[†]Norges Bank, [‡]BI Norwegian Business School, *CEPR, *Nord University

Structural Changes and the Implications for Inflation May 7-8, 2024

Disclaimer: the views expressed in this presentation are those of the authors and do not necessarily reflect those of Norges Bank

イロト イポト イモト イモト

Introduction

The surge in US inflation: unseen in the last 40 years

The Recent Surge in Inflation

May, 2024 1/23

Motivation I

What drives the recent inflation surge?

- Supply vs. demand factors
- Important policy implications

Rapidly growing literature:

- Bernanke and Blanchard (2024), Benigno and Eggertsson (2024), Shapiro (2023), Eickmeier and Hofmann (2022), Ascari et al. (2023), Friis et al. (2023), Cerrato and Gitti (2022), Mori (2024)
- Most analyses use:
 - Structural Vector Autoregressive (SVAR) models
 - Historical shock decompositions

Motivation II

This paper: Important pitfall in computing historical decompositions in standard SVARs

- The large uncertainty around the deterministic components of the VAR make inference whimsical
- Point related to Sims (1993, 1996 and 2000) and Giannone, Lenza and Primiceri (GLP) (2019)
- We highlight a new aspect of the problem

Road map

• Describe the nature of the problem. Independent of:

- The identification scheme
- The prior selection
- The VAR dimension, see Canova and Ferroni (2022)
- The sample size
- Propose solutions:
 - Single-unit-root prior, see Sims (1993)
 - Data treatment pre-estimation
 - Median historical decomposition
- Answer the question "what drives US post-Covid inflation?"
- Look at evidence from other countries

・ロト ・四ト ・ヨト・

The problem

æ

A Baseline SVAR

$$Y_t = C + \sum_{i=1}^p A_i Y_{t-i} + u_t,$$

- $Y_t = \begin{bmatrix} \Delta y_t & \pi_t \end{bmatrix}$ where Δy_t is Real GDP growth; π_t is GDP deflator inflation
- US data; sample 1983Q1-2022Q4
- p = 4 lags; diffuse prior

Contemporaneous sign restrictions

	Supply	Demand
Δ GDP	+	+
Inflation	-	+

э

イロト 不得 トイヨト イヨト

IRFs: pointwise median and 3 (Fry-Pagan) draws

HDs of inflation based on the same 3 draws

• Indistinguishable IRFs, but different HDs! Why?

Image: A matrix and a matrix

Deterministic and stochastic components in VARs

A (companion form) VAR(1):

$$Y_t = C + AY_{t-1} + u_t$$

Iterating backwards:

$$Y_{t} = \underbrace{(I + A + A^{2} + \dots + A^{t-1})C + A^{t}Y_{0}}_{\text{Deterministic components}}$$
$$+ \underbrace{A^{t-1}u_{1} + \dots + Au_{t-1} + u_{t}}_{\text{Stochastic components}}$$
$$\equiv DC_{t} + SC_{t}$$

- DC_t is the component of Y_t predictable at time 0.
- $u = Fe_t$, F identification matrix.

The deterministic component of inflation

Deterministic components dispersed! They settle to a different level!

Different specifications, same issue

May, 2024

▲ 臣 ▶ ▲ 臣

10/23

Takeaways

- Need HDs to shed light on the sources of the recent inflation surge.
- Similar IRFs may generate vastly different HDs!
 - $\bullet~$ Large dispersion in DC \rightarrow large dispersion in SC

Conclusions independent of:

- identification assumptions
- VAR priors
- the dimensionality of the VAR
- the sample size (a larger sample may include a break)
- Q1: Why are deterministic components dispersed?
- Q2: How can we solve the problem?

May, 2024

э

A simulation exercise

Simulate data from two bivariate VAR(1) models:

$$Y_t = C + AY_{t-1} + u_t$$
Less persistent
$$A = \begin{pmatrix} 0.6 & -0.3 \\ 0.3 & 0.4 \end{pmatrix}$$

$$C = \begin{pmatrix} 0.4 \\ 0.5 \end{pmatrix}$$

$$C = \begin{pmatrix} 0.4 \\ 0.5 \end{pmatrix}$$

$$C = \begin{pmatrix} 0.4 \\ 0.5 \end{pmatrix}$$

• Use T=500, 150, and 80.

• Study the properties of estimates of deterministic components.

イロト 不得 トイヨト イヨト

э

Deterministic components of y_1 : Diffuse prior

Problem more relevant for small T and persistent process.

• • ■ • • ■ • May, 2024

13/23

Solutions

May, 2024

æ

A single-unit-root prior á la Sims (1993)

Add artificial observation to the beginning of the sample: both current and lagged data given by $\frac{1}{\delta} \bar{Y}_0$, intercept set to $\frac{1}{\delta}$

- \bar{Y}_0 is set to the sample mean.
- δ set maximizing the marginal likelihood.

The stochastic constraint imposed by artificial observation on the VAR model

$$[I-A] \, \bar{Y}_0 - C = \delta u_0$$

Implying

$$DC_t = (A^t(Y_0 - \bar{Y}_0 + (I - A)^{-1}\delta u_0) + \bar{Y}_0 - (I - A)^{-1}\delta u_0))$$

May, 2024

Image: A matrix and a matrix

SUR prior in the simulation exercise revisited

May, 2024

< 17 →

SUR prior applied to US inflation data

Solutions

HD of US inflation with SUR prior

- Similar deterministic components imply similar HD
- About 2/3 of the recent inflation surge due to demand factors

May, 2024

Alternative I: De-meaning of the VAR

By de-meaning the data and estimating the VAR without a constant:

The term $(I + A + A^2 + \cdots + A^{t-1})C$ disappears!

・ロト ・四ト ・ヨト ・ヨト

HD of inflation: de-meaned data

Solutions

Alternative II: median historical decomposition

Normal-Inverse Wishart prior

2014 2016 2018 2020 2022

Minnesota prior

Single-unit-root prior

The Recent Surge in Inflation

20/23

Solutions

Euro area: SVAR estimated using the single-unit-root prior

The Recent Surge in Inflation

Overfitting vs. excess volatility

Overfitting: flat-prior VARs attribute an implausibly large share of the variation in observed time series to their deterministic components

- problem arises with stationary variables when initial values are distant from their steady state
- leads to marked temporal heterogeneity

Excess volatility: *uncertainty* around the estimated deterministic components, not to their *level*.

Important: excess volatility can easily manifest itself even when the overfitting problem is relatively minor

Insight: SUR prior, initially designed for overfitting, is even more effective at dealing with excess volatility

イロト 不得 トイヨト イヨト

э.

Conclusions

- Large dispersion in estimates of the deterministic component.
 Problem more relevant for persistent variables and small samples.
- Posterior draws with similar IRFs may generate different HDs.
- Potential solutions:
 - Add single-unit-root prior
 - Demean the data and estimate a VAR without a constant
 - Compute median historical decomposition
- Around 2/3 of the recent US inflation surge is driven by demand factors and 1/3 by supply factors.
- Demand factors are also important drivers of the surge in inflation in many other countries.

・ロト ・ 四ト ・ ヨト ・ ヨト …

EXTRA SLIDES

æ

Sign restrictions

- Why sign restrictions?
 - Meaningful and mutually exhaustive distinction between supply and demandshocks.
 - Cholesky: no structural interpretation.
 - Blanchard-Quah: problematic when demand shocks may have long run effects, Furlanetto, et al. (2023).

Different identification schemes

- Sign-restricted SVARs are set identified. Use point identification schemes to eliminate additional layer of uncertainty.
- Blanchard-Quah decomposition, restriction on the cumulative response.

	Supply	Demand
Δ GDP	X	0
Inflation	X	х

Cholesky decomposition, restriction on impact.

	Supply	Demand
GDP	X	0
Inflation	x	x

Informative priors

- Informative priors helps to reduce estimation uncertainty.
- Do they also help to reduce historical decomposition uncertainty?
- Normal-Inverse Wishart prior
 - A normal prior for the AR parameters centered at zero with a diagonal covariance matrix of 10.
 - A inverse Wishart prior for the covariance matrix of the residuals with a unitary diagonal matrix as scale and n+1 degrees of freedom.

2 Minnesota prior

- A normal prior centered at zero for all AR coefficients, including the variables' first own lag
- The overall tightness is optimized, as in Giannone et al. (2015)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Uncertainty surrounding historical decomposition for diffuse prior

May, 2024

Image: A matrix and a matrix

Uncertainty surrounding the historical decomposition of inflation, SUR prior

May, 2024

Historical decompositions in selected countries

Sweden

The Recent Surge in Inflation

May, 2024