The Design of a Central Counterparty

John Kuong INSEAD, CEPR Vincent Maurin

Stockholm School of Economics Swedish House of Finance

Oct 14^{th} , 2021

The Importance of Clearing

- Great Financial Crisis put spotlight on counterparty risks in OTC markets.
- ▶ Regulators' response (e.g. EMIR): central clearing of OTC contracts.

The Importance of Clearing

- Great Financial Crisis put spotlight on counterparty risks in OTC markets.
- ▶ Regulators' response (e.g. EMIR): central clearing of OTC contracts.
- Central clearing = novation to a Central CounterParty (CCP).

The Importance of Clearing

- Great Financial Crisis put spotlight on counterparty risks in OTC markets.
- ▶ Regulators' response (e.g. EMIR): central clearing of OTC contracts.
- Central clearing = novation to a Central CounterParty (CCP).

- CCPs became major intermediaries in post-crisis financial system:
 - Interest rate derivatives: 15% cleared in 2009 \rightarrow 60% in 2018 (BIS).
 - Majority of EU repos are centrally cleared (Mancini, 2015).

• Are benefits from loss mutualization worth the costs?

- 1. Collateral (guarantees contract payments + default fund contributions).
- 2. Potential weakening of market discipline among investors.

• Are benefits from **loss mutualization** worth the costs?

- 1. Collateral (guarantees contract payments + default fund contributions).
- 2. Potential weakening of market discipline among investors.
- ▶ Who should bear the losses? CCP capital vs. other members?
- Is private loss-sharing design optimal?

Central Clearing = multilateral contract to mutualize counterparty risk

- 1. Collateral needed to expand risk-sharing capacity.
- 2. Counterparty monitoring desirable but not verifiable.

Central Clearing = multilateral contract to mutualize counterparty risk

- 1. Collateral needed to expand risk-sharing capacity.
- 2. Counterparty monitoring desirable but not verifiable.

What we find

Central clearing does not always dominate bilateral trading.
 Only true with intermediate collateral cost and large market size.

Central Clearing = multilateral contract to mutualize counterparty risk

- 1. Collateral needed to expand risk-sharing capacity.
- 2. Counterparty monitoring desirable but not verifiable.

What we find

- Central clearing does not always dominate bilateral trading.
 Only true with intermediate collateral cost and large market size.
- ▶ CCP third-party may emerge as centralized monitor (~ Diamond 84).
 - CCP compensated with a first-loss equity claim (as in practice).
 - CCP required by members to contribute skin-in-the-game (SITG) capital.

Central Clearing = multilateral contract to mutualize counterparty risk

- 1. Collateral needed to expand risk-sharing capacity.
- 2. Counterparty monitoring desirable but not verifiable.

What we find

- Central clearing does not always dominate bilateral trading.
 Only true with intermediate collateral cost and large market size.
- ▶ CCP third-party may emerge as centralized monitor (~ Diamond 84).
 - CCP compensated with a first-loss equity claim (as in practice).
 - CCP required by members to contribute skin-in-the-game (SITG) capital.
- Privately optimal level of SITG capital can be socially inefficient.

Outline

Motivation

The Model

Observable Monitoring

Central Clearing with Incentives

Conclusion

Agents

- ▶ 2 dates $t \in \{0,1\}$. 2 equiprobable aggregate states $S \in \{L, H\}$ at t = 1.
- ▶ Two groups with *N* investors each: *H*-investors and *L*-investors.
- ► Gains from trade:
 - S-investors like consumption more in state S. Hedging need \hat{c}

• But they own a non-tradable asset that only pays in state S'.

Agents

- ▶ 2 dates $t \in \{0,1\}$. 2 equiprobable aggregate states $S \in \{L, H\}$ at t = 1.
- ▶ Two groups with *N* investors each: *H*-investors and *L*-investors.
- ► Gains from trade:
 - S-investors like consumption more in state S. Hedging need \hat{c}

$$U_{S}(c_{S},c_{S'}) = \frac{1}{2}\mathbb{E}[c_{S'}] + \frac{1}{2}\mathbb{E}[c_{S} + (\nu - 1)\min\{c_{S},\hat{c}\}]$$

• But they own a non-tradable asset that only pays in state S'.

Agents

- ▶ 2 dates $t \in \{0,1\}$. 2 equiprobable aggregate states $S \in \{L, H\}$ at t = 1.
- ▶ Two groups with *N* investors each: *H*-investors and *L*-investors.
- Gains from trade:
 - S-investors like consumption more in state S. Hedging need \hat{c}

$$U_{S}(c_{S},c_{S'}) = \frac{1}{2}\mathbb{E}[c_{S'}] + \frac{1}{2}\mathbb{E}[c_{S} + (\nu - 1)\min\{c_{S},\hat{c}\}]$$

• But they own a non-tradable asset that only pays in state S'.

• Idiosyncratic (counterparty) risk \rightarrow benefit from mutualization.

Assumption (relaxed in paper): 1 surviving payer can cover hedging needs .

$$2R \ge N \underbrace{\hat{c}}_{\text{Hedging need}}$$

Frictions

- Friction 1: Limited asset pledgeability $\tilde{\beta} < \hat{c} < 2$.
 - If expected liability/asset $\geq \tilde{\beta}$, investor shirks at date 0 \rightarrow asset pays 0.
 - Captures endogenous risk-taking behavior/wrong-way risk.

Frictions

- Friction 1: Limited asset pledgeability $\tilde{\beta} < \hat{c} < 2$.
 - If expected liability/asset $\geq \tilde{\beta}$, investor shirks at date 0 \rightarrow asset pays 0.
 - Captures endogenous risk-taking behavior/wrong-way risk.
- Cash collateral: Liquidate $x \in (0, 1)$ units of asset $\rightarrow x$ units of cash.
 - Cash collateral has an opportunity cost $k \equiv qR 1$.
 - Cash collateral is safe and fully pledgeable.

Frictions

- Friction 1: Limited asset pledgeability $\tilde{\beta} < \hat{c} < 2$.
 - If expected liability/asset $\geq \tilde{\beta}$, investor shirks at date 0 \rightarrow asset pays 0.
 - Captures endogenous risk-taking behavior/wrong-way risk.
- Cash collateral: Liquidate $x \in (0, 1)$ units of asset $\rightarrow x$ units of cash.
 - Cash collateral has an opportunity cost $k \equiv qR 1$.
 - Cash collateral is safe and fully pledgeable.
- Monitoring: effort cost $\psi \rightarrow \text{investor } \tilde{\beta} = \beta > 0.$

No effort cost
$$\rightarrow$$
 investor $\tilde{\beta} = \begin{cases} \beta & (\text{prob. } \alpha) \\ 0 & (\text{prob. } 1 - \alpha) \end{cases}$

 \rightarrow Friction 2: Monitoring effort and outcome not observable.

CCP agent

▶ Third-party CCP agent endowed with (cash) capital E at date 0

$$U_C = \nu_C c_0 + c_1, \qquad \nu_C > 1$$

CCP agent

▶ Third-party CCP agent endowed with (cash) capital E at date 0

$$U_C = \nu_C c_0 + c_1, \qquad \nu_C > 1$$

• Assumption (for this talk): Cost of capital $\nu_C - 1 \ge k$.

 \rightarrow If cash helps satisfy hedging needs, collateral \succeq CCP capital.

CCP agent

▶ Third-party CCP agent endowed with (cash) capital E at date 0

$$U_C = \nu_C c_0 + c_1, \qquad \nu_C > 1$$

• Assumption (for this talk): Cost of capital $\nu_C - 1 \ge k$.

 \rightarrow If cash helps satisfy hedging needs, collateral \succeq CCP capital.

- Potential CCP roles:
 - 1. Enable loss mutualization
 - 2. Act as a centralized monitor of investors (vs. bilateral monitoring).

• Date 0: investors post collateral 2Nx, CCP pledges capital Ne_C .

- ▶ Date 0: investors post collateral 2*Nx*, CCP pledges capital *Ne*_C.
- Date 1: contingent transfers to/from investors + CCP compensation $N\pi_C$.

- ▶ Date 0: investors post collateral 2*Nx*, CCP pledges capital *Ne*_C.
- Date 1: contingent transfers to/from investors + CCP compensation $N\pi_C$.

Optimal contract properties (maximizes investors' utility)

1. Defaulter's collateral x is seized: max. pledgeable income | success.

- ▶ Date 0: investors post collateral 2*Nx*, CCP pledges capital *Ne*_C.
- Date 1: contingent transfers to/from investors + CCP compensation $N\pi_C$.

- 1. Defaulter's collateral x is seized: max. pledgeable income | success.
- 2. Receiver transfer either r_s , r_f or $2x + e_C$ (if all payers default).
 - \rightarrow Minimize transfer variability (risk-aversion) vs. bilateral monitoring incentives

Outline

Motivation

The Model

Observable Monitoring Full Asset Pledgeability

Limited Asset Pledgeabilit

Central Clearing with Incentives

Conclusion

First-Best

• Investors' asset fully pledgeable \rightarrow monitoring is redundant.

 \rightarrow no CCP capital, no compensation.

▶ Investor's Problem: Maximize over (*r_s*, *r_f*, *x*):

$$U = qR - xk + \frac{\nu - 1}{2} \left\{ q \min\{r_s, \hat{c}\} + (1 - q) \min\{r_f, \hat{c}\} - (1 - q)^N \left[\min\{r_f, \hat{c}\} - \min\{2x, \hat{c}\}\right] \right\}$$

First-Best

• Investors' asset fully pledgeable \rightarrow monitoring is redundant.

 \rightarrow no CCP capital, no compensation.

Investor's Problem: Maximize over (r_s, r_f, x):

$$U = qR - xk + \frac{\nu - 1}{2} \left\{ q \min\{r_s, \hat{c}\} + (1 - q) \min\{r_f, \hat{c}\} - (1 - q)^N \left[\min\{r_f, \hat{c}\} - \min\{2x, \hat{c}\}\right] \right\}$$

Results

1. $r_f = r_s = \hat{c}$ is optimal \rightarrow satiate hedging needs (full loss mutualization).

First-Best

• Investors' asset fully pledgeable \rightarrow monitoring is redundant.

 \rightarrow no CCP capital, no compensation.

Investor's Problem: Maximize over (r_s, r_f, x):

$$U = qR - xk + \frac{\nu - 1}{2} \left\{ q \min\{r_s, \hat{c}\} + (1 - q) \min\{r_f, \hat{c}\} - (1 - q)^N \left[\min\{r_f, \hat{c}\} - \min\{2x, \hat{c}\}\right] \right\}$$

Results

- 1. $r_f = r_s = \hat{c}$ is optimal \rightarrow satiate hedging needs (full loss mutualization).
- 2. Use collateral to hedge joint-default state iff

$$k \leq \underline{k}_N \equiv (\nu - 1)(1 - q)^N$$

 \rightarrow Contract is fully collateralized, that is, $x = \frac{\hat{c}}{2}$ when $k \leq \underline{k}_N$.

Outline

Motivation

The Model

Observable Monitoring Full Asset Pledgeability Limited Asset Pledgeability

Central Clearing with Incentives

Conclusion

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[\textit{p}_s] = rac{1 - (1 - q)^{N}}{q}\hat{c} \geq \hat{c} > eta$$

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[payment|succesful] = \mathbb{E}[p_s] = rac{1 - (1 - q)^N}{q} \hat{c} \ge \hat{c} > eta$$

• With collateral x, maximum credible expected payment is $x + (1 - x)\beta$.

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[p_s] = rac{1 - (1 - q)^{N}}{q} \hat{c} \geq \hat{c} > eta$$

- With collateral x, maximum credible expected payment is $x + (1 x)\beta$.
- Expected Excess Payment Capacity (EPC) at an investor-pair level
 - \rightarrow How much an investor pair can contribute beyond own hedging need.

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[p_s] = rac{1 - (1 - q)^{N}}{q} \hat{c} \geq \hat{c} > eta$$

• With collateral x, maximum credible expected payment is $x + (1 - x)\beta$.

Expected Excess Payment Capacity (EPC) at an investor-pair level
 How much an investor pair can contribute beyond own hedging need.

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[p_s] = rac{1 - (1 - q)^{N}}{q} \hat{c} \geq \hat{c} > eta$$

• With collateral x, maximum credible expected payment is $x + (1 - x)\beta$.

Expected Excess Payment Capacity (EPC) at an investor-pair level
 How much an investor pair can contribute beyond own hedging need.

$$EPC(x) = \underbrace{x}_{Self-hedging} +$$

$$-\underbrace{\hat{c}}_{\text{Hedging need}}$$

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[p_s] = rac{1 - (1 - q)^{N}}{q} \hat{c} \geq \hat{c} > eta$$

- With collateral x, maximum credible expected payment is $x + (1 x)\beta$.
- Expected Excess Payment Capacity (EPC) at an investor-pair level
 How much an investor pair can contribute beyond own hedging need.

$$EPC(x) = \underbrace{x}_{\text{Self-hedging}} + \underbrace{(1-q)x}_{\text{Counterparty def.}} + - \underbrace{\hat{c}}_{\text{Hedging need}}$$

▶ Full-loss-mutualization contract payment exceeds pledgeable income

$$\mathbb{E}[\textit{payment}|\textit{succesful}] = \mathbb{E}[p_s] = rac{1 - (1 - q)^{N}}{q} \hat{c} \geq \hat{c} > eta$$

- With collateral x, maximum credible expected payment is $x + (1 x)\beta$.
- Expected Excess Payment Capacity (EPC) at an investor-pair level
 How much an investor pair can contribute beyond own hedging need.

$$EPC(x) = \underbrace{x}_{\text{Self-hedging}} + \underbrace{(1-q)x}_{\text{Counterparty def.}} + \underbrace{q[x+(1-x)\beta]}_{\text{Counterparty succ}} - \underbrace{\hat{c}}_{\text{Hedging need}}$$

1.
$$EPC(0) = \beta - \hat{c} < 0$$

2. $EPC'(x) = (2 - q\beta) > 0 \rightarrow$ collateral needed for loss mutualization!

- Limited pledgeability \rightarrow bilateral monitoring is optimal.
 - \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

- Limited pledgeability \rightarrow bilateral monitoring is optimal.
 - \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

Fully CollateralizedFull Loss Mutu.
$$(r_s, r_f, x) = (\hat{c}, \hat{c}, \frac{\hat{c}}{2})$$
 $(r_s, r_f, x) = (\hat{c}, \hat{c}, x_N < \frac{\hat{c}}{2})$ 0 \underline{k}_N Collateral Cost k

 \blacktriangleright Limited pledgeability \rightarrow bilateral monitoring is optimal.

 \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

Fully CollateralizedFull Loss Mutu.Uncollateralized
$$(r_s, r_f, x) = (\hat{c}, \hat{c}, \frac{\hat{c}}{2})$$
 $(r_s, r_f, x) = (\hat{c}, \hat{c}, x_N < \frac{\hat{c}}{2})$ Uncollateralized 0 \underline{k}_N $\overline{k} = \frac{\nu - 1}{2}(2 - q\beta)$ Collateral Cost k

 \blacktriangleright Limited pledgeability \rightarrow bilateral monitoring is optimal.

 \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

• Limited pledgeability \rightarrow bilateral monitoring is optimal.

 \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

▶ If $k \notin [\underline{k}_N, \overline{k}]$, bilateral implementation of contract \rightarrow no need for CCP!

 \blacktriangleright Limited pledgeability \rightarrow bilateral monitoring is optimal.

 \hookrightarrow Payments to compensate CCP monitoring efforts require collateral.

- ▶ If $k \notin [\underline{k}_N, \overline{k}]$, bilateral implementation of contract \rightarrow no need for CCP!
- ► Central clearing more desirable with more members (*N* goes up). More

Outline

Motivation

The Model

Observable Monitoring

Central Clearing with Incentives

Conclusion

Monitoring Incentives

- ► So far, monitoring was observable and optimally done bilaterally.
- Assume now monitoring is unobservable \rightarrow incentives needed.

Monitoring Incentives

- ► So far, monitoring was observable and optimally done bilaterally.
- Assume now monitoring is unobservable \rightarrow incentives needed.
- ▶ Loss Mutualization (LM) and (bilateral) monitoring incentives conflict.

$$\underbrace{\frac{\psi}{q(1-\alpha)}}_{\text{social cost}} \leq \frac{1}{2} \Big\{ \underbrace{\mathbb{E}[U_R | \text{counterparty succeeds}] - \mathbb{E}[U_R | \text{counterparty fails}]}_{\downarrow \text{ with loss mutualization}} \Big\}$$

 U_R : utility of a receiver

Monitoring Incentives

- ► So far, monitoring was observable and optimally done bilaterally.
- Assume now monitoring is unobservable \rightarrow incentives needed.
- ▶ Loss Mutualization (LM) and (bilateral) monitoring incentives conflict.

$$\underbrace{\frac{\psi}{q(1-\alpha)}}_{\text{social cost}} \leq \frac{1}{2} \left\{ \underbrace{\mathbb{E}[U_R | \text{counterparty succeeds}] - \mathbb{E}[U_R | \text{counterparty fails}]}_{\downarrow \text{ with loss mutualization}} \right\}$$

 U_R : utility of a receiver

• Incentive Compatible Bilateral monitoring \rightarrow reduced loss mutualization.

CCP as a monitor

- ► Alternative to bilateral monitoring: Centralized monitoring by CCP.
- CCP contract: Capital contribution Ne_c at t = 0.

Compensation $N\pi_C(d)$ at t = 1. d = # default. payers.

CCP as a monitor

- ► Alternative to bilateral monitoring: Centralized monitoring by CCP.
- ► CCP contract: Capital contribution Ne_c at t = 0. Compensation Nπ_C(d) at t = 1. d = # default. payers.
- **•** Downside: CCP monitoring is inherently more costly.
 - \rightarrow fair cost + collateral cost for investors who pay compensation.
- ▶ Upside: Endogenous economies of scale in monitoring when unobservable.

 \rightarrow Agency rent \downarrow with # of investors monitored, as in Diamond (1984).

CCP as a monitor

- ▶ Alternative to bilateral monitoring: Centralized monitoring by CCP.
- ► CCP contract: Capital contribution Ne_c at t = 0. Compensation Nπ_C(d) at t = 1. d = # default. payers.

- **Downside**: CCP monitoring is inherently more costly.
 - \rightarrow fair cost + collateral cost for investors who pay compensation.
- Upside: Endogenous economies of scale in monitoring when unobservable.

 \rightarrow Agency rent \downarrow with # of investors monitored, as in Diamond (1984).

Result: Centralized monitoring \succeq for *N* large or severe monitoring frictions.

Kuong, Maurin

CCP contract

Proposition The optimal CCP contract is such that the CCP contributes capital and gets paid if and only if no CCP member defaults.

- ▶ High-powered contract best disciplines a centralized monitor.
 - \rightarrow Akin to "cross-pledging" benefits in corporate finance.
 - \rightarrow Interpretation: CCP gets first-loss equity tranche.
- Similar to CCP management compensation practice (e.g. OCC, LCH)
- **CCP** "skin in the game" capital: requested by investors.

$$\underbrace{\nu_{C} e_{C}^{*}}_{\text{Cost of capital}} = \underbrace{\frac{2\psi\alpha^{N}}{1-\alpha^{N}}}_{\text{Monitoring Rent}}$$

Empirical Relevance

CCP agent role: Centralized Monitor

 \rightarrow CCP Due diligence: internal credit classification, on-site visits,... (ESMA 2020)

Empirical Relevance

CCP agent role: Centralized Monitor

 \rightarrow CCP Due diligence: internal credit classification, on-site visits,... (ESMA 2020)

CCP Design: Rationalize elements of the default waterfall (see Duffie, 2015).

- Defaulter pays first principle (collateral is seized)
- CCP junior equity tranche.
- Ioss mutualization from surviving members.

Empirical Relevance

CCP agent role: Centralized Monitor

 \rightarrow CCP Due diligence: internal credit classification, on-site visits,... (ESMA 2020)

CCP Design: Rationalize elements of the default waterfall (see Duffie, 2015).

- Defaulter pays first principle (collateral is seized)
- CCP junior equity tranche.
- Ioss mutualization from surviving members.

CCP Ownership: small member-owned CCP vs. large third-party CCP.

Regulating (Third-Party) CCP Capital?

► Social planner seeks to maxmimize total surplus (investors+CCP).

Similar objective to fully mutualize losses but different choice of capital

$$\max_{e_{C} \in \{0, e_{C}^{*}\}} 2NU(e) + \underbrace{N\nu_{C}(e_{C}^{*} - e_{C})}_{CCP's \text{ profit}}$$

Regulating (Third-Party) CCP Capital?

- ► Social planner seeks to maxmimize total surplus (investors+CCP).
- Similar objective to fully mutualize losses but different choice of capital

$$\max_{e_{\mathcal{C}} \in \{0, e_{\mathcal{C}}^*\}} \quad 2NU(e) + \underbrace{N\nu_{\mathcal{C}}(e_{\mathcal{C}}^* - e_{\mathcal{C}})}_{\text{CCP's profit}}$$

- Social planner's optimal choice of skin-in-the-game capital is
 - lower than investors' choice when ν_{C} is high.
 - higher than CCP's choice $(e_c = 0)$ when ν_c is low (see paper).

Regulating (Third-Party) CCP Capital?

- ► Social planner seeks to maxmimize total surplus (investors+CCP).
- Similar objective to fully mutualize losses but different choice of capital

$$\max_{e_{\mathcal{C}} \in \{0, e_{\mathcal{C}}^*\}} \quad 2NU(e) + \underbrace{N\nu_{\mathcal{C}}(e_{\mathcal{C}}^* - e_{\mathcal{C}})}_{\text{CCP's profit}}$$

- Social planner's optimal choice of skin-in-the-game capital is
 - lower than investors' choice when ν_{C} is high.
 - higher than CCP's choice $(e_c = 0)$ when ν_c is low (see paper).
- ▶ Echoes tension btw. CCPs (LCH 2015) and members (ABN-AMRO 2020).

Literature

 Central Counterparty Clearing (Empirics): Duffie, Scheicher & Vuillemey (2015), Mancini, Ranaldo & Wrampelmeyer (2015), Ghamami & Glasserman (2017), Menkveld (2017), Bernstein, Hughson & Weidenmier (2019), Huang, Menkveld & Yu (2020), Vuillemey (2020).

- Central Counterparty Clearing (Theory): Duffie and Zhu (2011), Leitner (2011), Biais, Heider, Hoerova (2012) Koeppl (2013), Murphy and Nahai-Williamson (2014), Koeppl and Monnet (2017), Antinolfi, Carapella & Carli (2018), Huang (2020), Wang, Capponi & Zhang (2020), Huang & Zhu (2021)
 - \rightarrow Focus on loss mutualization role of CCPs.
 - \rightarrow Role of CCP agent, CCP compensation and capital structure.
- OTC vs. Centralized Trading: DGP (2005), Acharya & Bisin (2014), Malamud & Rostek (2017), Babus & Kondor (2018), Lee & Wang (2019), Glode & Opp (2020), Dugast, Uslu & Weill (2020), ...
 - \rightarrow Benefits depend on collateral cost, market size, counterparty quality.

Outline

Motivation

The Model

Observable Monitoring

Central Clearing with Incentives

Conclusion

Conclusion

Model of central clearing by CCPs to mitigate counterparty risk.

Main results:

- 1. Central clearing is useful when collateral cost is intermediate.
- 2. Many contract features endogenized (margins, default funds, CCP capital).
- 3. CCP can act as centralized monitor and hold junior tranche for incentives.
- 4. Conflict between CCP and members about CCP capital size.

• Future Work? Competition between CCPs.

THANK YOU!

Implications: Bilateral vs. Centralized Clearing

Corollary 1: Larger market favors central clearing $\rightarrow [\underline{k}_N, \overline{k}]$ expands with N.

- Complete Loss Mutualization \succ Full Insurance for $k \ge \underline{k}_N$.
- Full Insurance advantage = joint default insurance (low value for large N).

Back to presentation

Implications: Bilateral vs. Centralized Clearing

Corollary 1: Larger market favors central clearing $\rightarrow [\underline{k}_N, \overline{k}]$ expands with N.

- Complete Loss Mutualization \succ Full Insurance for $k \ge \underline{k}_N$.
- Full Insurance advantage = joint default insurance (low value for large N).

Corollary 2: Central clearing may require less collateral than bil. trading.

- ▶ With bilateral trading, collateral is the only insurance device available.
- ▶ For N > 1, region $[\underline{k}_N, \underline{k}_1]$: Bilateral → Full Insurance

 $\mathsf{Multilateral} \to \mathsf{Complete} \ \mathsf{Loss} \ \mathsf{Mutualization}.$

Back to presentation