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Abstract

We put forward a Merton-type multi-factor portfolio model for assessing banks’ contributions to
systemic risk. This model accounts for the major drivers of banks’ systemic relevance: size, default
risk and correlation of banks’ assets as a proxy for interconnectedness. We measure systemic risk in
terms of the portfolio expected shortfall (ES). Banks’ (marginal) risk contributions are calculated
based on partial derivatives of the ES in order to ensure a full risk allocation among institutions. We
compare the performance of an importance sampling algorithm with a fast analytical approximation
of the ES and the marginal risk contributions. Furthermore, we show empirically for a portfolio of
large international banks how our approach could be implemented to compute bank-specific capital
surcharges for systemic risk or stabilisation fees. We find that size alone is not a reliable proxy for
the systemic importance of a bank in this framework. In order to smooth cyclical fluctuations of
the risk measure, we explore a time-varying confidence level of the ES.

Keywords: systemic risk contributions, systemic capital charge, expected shortfall, importance
sampling, granularity adjustment
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Non-technical summary

In the aftermath of the recent financial turmoil, part of the debate on regulatory reforms has

focused on the question how the contribution of individual financial firms to systemic risk can be

addressed. The final goal of these considerations is to internalise the negative externalities imposed

on society in a financial crisis. Two different policy tools that have been put forward for this purpose

are a regulatory capital surcharge based on an institution’s contribution to systemic risk and a levy

that is paid into a resolution / stabilisation fund. In this paper we contribute to the regulatory

debate first by introducing a methodology to assess the systemic risk contributions of banks and

second by an illustrative implementation a capital surcharge based thereupon.

We measure the system-wide risk by means of a portfolio approach that is widely used in the

financial industry to manage credit risk at the individual firm level. A key advantage of this approach

is that it does not only account for the size and an estimate of the financial soundness of the respective

institution but also captures interlinkages between financial firms. We use stock market information

in order to gauge market participants’ collective evaluation of these difficult to quantify interlinkages

which are reflected in the correlation structure of risk factors in a multi-factor model of firms’ asset

returns. Our methodology can be extended to private firms if proxy variables are used to replace

the market price dependent information.

In order to assess the contribution of each individual institution to system-wide risk, we apply

an allocation technique based on the institution’s marginal risk contribution. An important dis-

tinguishing feature of this method is the full allocation property, which means that the sum of the

individual risk contributions equals the total system-wide risk. For illustrative purposes, we imple-

ment the outlined methodology for a portfolio of large international banks. Although larger firms

tend to contribute more to the systemic risk as expected, the functional link between the relative

size and the risk contribution is non-linear and portfolio-dependent. Therefore, size alone should

not be considered as a reliable proxy of systemic importance.

Within the presented framework the evolution of systemic risk over time is mainly driven by the

co-movement of the probabilities of default in the banking sector, which may follow a procyclical

pattern when market-information based estimates are utilised. To mitigate possible procyclical

effects of regulatory tools based on the proposed measure of systemic risk, we implement a time-

varying level of the regulator’s tail-risk tolerance when calculating the system-wide risk.

Although considerable progress has already been achieved in understanding the complex nature

of systemic risk, it is worth noting that further theoretical and empirical research is required before

systemic-risk-related policy options based on this model-based approach can be put into practice.



Nichttechnische Zusammenfassung

In Folge der jüngsten Finanzkrise hat sich ein Teil der Diskussion über regulatorische Reformen auf

die Frage konzentriert, wie der Beitrag von einzelnen Banken zum systemischen Risiko behandelt

werden kann. Das Endziel dieser Überlegungen ist es, die externen Kosten, die in einer Finanzkrise

dem Steuerzahler auferlegt werden, zu internalisieren. Zwei verschiedene regulatorische Instrumente

wurden zu diesem Zweck vorgeschlagen: ein Kapitalzuschlag, der auf dem Beitrag des Instituts

zum systemischen Risiko basiert, und eine Abgabe, die in einen Abwicklungs- oder Stabilisisierungs-

fonds eingezahlt wird. In diesem Papier liefern wir einen Beitrag zu dieser Diskussion, indem wir

erstens eine Methodik zur Bestimmung des systemischen Risikobeitrags von Banken und zweitens

eine beispielhafte Umsetzung eines darauf basierenden Kapitalzuschlags bzw. einer Bankenabgabe

vorstellen.

Zwecks Messung des systemweiten Risikos setzten wir einen Portfolioansatz um, der eine breite

Anwendung bei Finanzunternehmen zur Steuerung des Kreditrisikos auf Institutsebene findet. Ein

Hauptvorteil dieses Ansatzes besteht darin, dass er nicht nur die relative Größe und das individuelle

Ausfallrisiko einer Bank berücksichtigt, sondern auch Abhängigkeiten zwischen den Banken erfasst.

Wir verwenden Aktienkursinformationen, um die gemeinsame Informationsverarbeitungsfähigkeit

der Marktinvestoren für diese schwer zu quantifizierenden Abhängigkeiten zu nutzen. Die Kor-

relationsstruktur wird dabei in einem Mehrfaktorenmodell der Firmenwertrenditen der Banken in

Abhängigkeit gemeinsamer Risikofaktoren erfasst. Die vorgeschlagene Modellierungsmethode kann

grundsätzlich auf nicht-börsennotierte Banken ausgedehnt werden, wenn die individuellen Ausfall-

wahrscheinlichkeiten und Exposures gegenüber den gemeinsamen Risikofaktoren anhand von nicht

marktpreisbasierten Informationen verlässlich geschätzt werden können.

Um den Beitrag jedes einzelnen Instituts zum systemweiten Risiko zu bemessen, verwenden wir

ein Allokationsverfahren, das auf dem marginalen Risikobeitrag der Bank basiert. Eine wichtige

kennzeichnende Eigenschaft dieser Methode ist die vollständige Aufteilung des Gesamtrisikos auf

die additiven Beitäge einzelner Banken.

Zu illustrativen Zwecken implementieren wir die vorgeschlagene Methodik für ein Portfolio beste-

hend aus großen, international tätigen Banken. Obwohl große Finanzhäuser, wie erwartet, tenden-

ziell mehr zum systemischen Risiko beitragen, ist die funktionale Beziehung zwischen der relativen

Größe eines Institutis und seinem Risikobeitrag nichtlinear und portfolioabhängig. Deshalb sollte

die Firmengröße nicht allein als zuverlässiger Proxy für die systemische Relevanz betrachtet werden.

Im Rahmen des vorgeschlagenen Ansatzes wird der zeitliche Verlauf des systemischen Risikos im

Wesentlichen durch die gleichgerichtete Entwicklung der Ausfallwahrscheinlichkeiten im Bankensek-

tor bestimmt. Diese kann ein prozyklisches Verhalten auf den Tag legen, wenn markbasierte Infor-

mationen zur Schätzung herangezogen werden. Um der möglichen Prozyklizität von regulatorischen

Instrumenten, die auf dem vorgeschlagegen Maß des systemischen Risikos basieren, entgegenzus-

teuern, implementieren wir ein zeitvariierendes regulatorisches Konfidenzniveau bei der Berechnung

des systemweiten Risikos.

Trotz des erheblichen Fortschrittes, der im Verständnis der komplexen Natur des systemischen

Risikos bereits erreicht wurde, ist weitere theoretische und empirische Forschung nötig, bevor mo-

dellbasierte Ansätze in die Praxis der makroprudenziellen Regulierung umgesetzt werden können.
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Systemic Risk Contributions:

A Credit Portfolio Approach1

1. Introduction

The failure of certain financial institutions such as Lehman, Northern Rock or HRE during the crisis

of 2007-2009 highlighted the significant adverse impact that a failure of a single firm can have on the

financial system as a whole. Therefore, a firm-specific or microprudential approach is not sufficient

to promote financial stability. Instead a careful assessment of a financial firm’s contribution to the

system-wide risk should be an important part of macro-prudential financial supervision.

The risk that refers to a financial system as a whole is often addressed as systemic risk. We define

this term in the following as the risk of a collapse of a financial system that entails a social welfare

loss. The task of addressing a systemic event and its negative externalities requires approaches for

measuring system-wide risk and decomposing it into the contributions of individual institutions. A

macro-prudential approach would rely on measures of the magnitude of the potential loss or cost

associated with the systemic event and on procedures for building up a sufficient capital basis in the

financial system to bear (most of) this cost. As an important auxiliary condition, macro-prudential

measures should contribute to reduce potential procyclical effects of regulation.

In this paper we focus on the subject of measuring and allocating systemic risk. For this purpose

we propose a widely used credit risk model that treats the financial system of banks similar to

a portfolio of securities and takes into account interlinkages between banks through their asset

correlations. Furthermore, the multi-factor correlation structure allows for a differentiated treatment

of individual or certain groups of institutions. This reflects the fact that episodes of financial distress

often arise from the exposure of groups of institutions to common risk factors.

In the portfolio context, a systemic event corresponds with the realisation of extreme portfolio

losses. The maximum systemic risk tolerated is defined as the expected shortfall (ES) at a confidence

level q, i.e. the expected loss in the worst 100(1 − q)% of cases. The value of the confidence level

q is set by the regulator depending on his risk tolerance. A macro-prudential tool based on the ES

may generate procyclical effects because of cyclical risk components such as point-in-time default

probabilities. Therefore, we consider also a time-variant confidence level q(t) as a possible mitigant

of procyclicality.

In order to break down extreme portfolio losses into the contributions of individual banks we

draw on a rich literature on coherent, additive risk contributions for credit portfolios. Employing

marginal risk contributions based on the partial derivatives of the portfolio ES with respect to the

1Natalia Puzanova and Klaus Düllmann, Deutsche Bundesbank, Department of Financial Stability and De-
partment of Banking Supervision, Wilhelm-Epstein-Str. 14, D-60431 Frankfurt/Main, Germany, Email:
natalia.puzanova@bundesbank.de and klaus.duellmann@bundesbank.de. We would like to thank all participants
of the Research Seminar at the Deutsche Bundesbank 2010 in Frankfurt/Main, especially Thilo Liebig, Peter Rau-
pach and Alexander Schulz, as well as the participants of the 14th SGF Conference in Zurich 2011, especially the
discussant Volker Vonhoff, for their valuable comments.

1



institutions’ relative portfolio weight allows for a complete allocation of the system-wide risk to the

individual banks.

On the basis of the estimated system-wide tail risk and its decomposition into the individual

institutions’ contributions, a set of rule-based policy interventions, such as systemic capital charge

or a stabilisation fee, can be designed.

In summary, we see the following four aspects as the main contribution of this paper:

1. We provide a full allocation of the systemic risk across institutions based on the Euler allocation

principle thereby adopting a methodology that is well-researched in the risk management

literature for the assessment of banks’ systemic importance.

2. We derive an analytical approximation of the marginal risk contributions and compare its

performance with a simulation-based importance sampling technique.

3. We use equity market information in order to gauge the market participants’ collective evalu-

ation of the otherwise difficult to quantify interlinkages that drive systemic risk.

4. We propose and empirically explore a time-varying confidence level of the ES as a method to

mitigate procyclical effects of capital charges for systemic risk.

The remainder of the paper is organised as follows. Section 2 provides a brief review of selected

literature. Section 3 presents the credit portfolio model on which the tail risk contributions are based.

Sections 4 and 5 present the estimation of the system-wide tail risk as well as tail risk contributions

by means of an IS simulation and an analytical solution respectively. Section 6 reports the results

of an empirical study carried out for a sample of large international banks. In section 7 the risk

drivers of the systemic risk and the banks’ respective systemic importance are analysed, namely

the probability of default, the asset correlations, and the relative size of a bank in the financial

system. Possible policy implications of the proposed methodology are presented in section 8. In this

section we distinguish between two dimensions: a cross-sectional dimension including a proposal for

an ES-based capital surcharge for systemic risk and a time series dimension in which we smooth

the cyclicality of the risk measure by a time-variant confidence level. Section 9 summarises and

concludes.

2. Related literature

Many methods for assessing systemic risk and risk contributions have been discussed in the related

literature. The IMF’s Global Financial Stability Report (IMF, 2009, pp 73-149) reviews the most

recent approaches for detecting the tail risk of a financial system by examining direct and indirect

financial sector interlinkages. Market prices of financial instruments and credit risk modelling have

already been used in the literature in order to measure systemic risk.

De Nicolo and Kwast (2002) argue that the information contained in banks’ equity returns can

be used to measure the total (direct and indirect) dependence since stock prices reflect market

participants’ collective evaluation of the future prospects of the firm, including the total impact

of its interactions with other institutions. In our paper we incorporate the banks’ equity return

correlation in order to judge the correlation between the institutions’ defaults.

2



Equity returns and other market data are widely used to measure the fragility of financial insti-

tutions at individual and aggregate levels. For example, Bartram et al. (2007) estimate the default

probabilities for a large sample of international banks from time series of equity prices and also

from equity option prices, based on the assumptions of Merton’s structural model (Merton, 1974).

They use this information to construct indicators for a systemic event. In our paper we use the

estimates of banks’ default probabilities obtained from Moody’s KMV, whose model is also based

on the Merton’s fundamental idea.

Huang et al. (2009) deduce risk neutral default probabilities for major banks from their CDS

spreads and asset return correlation from the co-movement of equity returns. Using these key

parameters as input in a portfolio credit risk model, the authors suggest computing an indicator of

systemic risk, namely the price of insurance against large default losses in the banking sector. The

theoretical insurance premium equals the risk-neutral expectation of portfolio credit losses given

that the losses exceed some minimum share of the sector’s total liabilities.

Another application of the credit portfolio approach based on market data can be found in Sego-

viano and Goodhart (2009). The authors utilise the ”nonparametric consistent information mul-

tivariate density optimising methodology” in order to obtain the joint multivariate density of the

banks’ asset value movements. Based on this information, several indicators of banking stability

can be constructed: (i) the joint probability of distress of all banks in the portfolio; (ii) a banking

stability index that reflects the expected number of banks becoming distressed given at least one

bank has become distressed; (iii) the conditional probabilities of distress for individual banks or

specific groups of banks.

Also by virtue of the joint probability distribution of banks’ assets, Lehar (2005) specifies the

following indicators of systemic risk: (i) an asset-value-related systemic risk index by computing

the probability that a group of banks with a total amount of assets greater than a certain fraction

of all banks’ assets goes bankrupt within a short period of time; (ii) a number-of-defaults-related

systemic risk index by computing the probability that a certain number of banks go bankrupt within

a short period of time; (iii) the value of a hypothetical deposit insurance, its volatility as well as the

individual volatility contributions.

While most of the methods described above focus on the monitoring of systemic risk, Adrian and

Brunnermeier (2009) suggest an approach for measuring the contributions that individual banks

make to systemic risk. For this purpose the authors make use of the quantile regression technique

and the CoVaR measure. The authors suggest predicting individual risk contributions on the basis

of certain firm-specific characteristics like size, leverage and maturity mismatch. A shortcoming of

the CoVaR approach is that the sum of individual risk contributions does not equal the system-wide

risk.

Tarashev et al. (2010) use a game theoretic concept and allocate systemic risk contributions to

banks based on the Shapley value concept. Their methodology can in principle be applied either

with VaR or ES as the relevant risk measure of the financial system. Banks’ individual probabil-

ities of default, (a fixed fraction of) the book value of liabilities and the chosen asset correlation

coefficient entirely determine the probability distribution of portfolio losses and allow for the esti-

mation of the portfolio tail risk. The risk at the portfolio level is then attributed to the individual

institutions by means of the Shapley value methodology. Thereby, for each specific institution, its
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contribution to the risk of all possible subportfolios in which this institution is present have to be

computed. The average value of all those contributions is than the institution’s contribution to the

systemic risk, or its Shapley value. The authors suggest to use the Shapley value as a measure

of an institution’s systemic importance on whose basis macro-prudential policy interventions may

be conducted. Unfortunately, due to the rapidly increasing computational complexity, the Shapley

value methodology can only be applied to very small portfolios or portfolios consisting of few ho-

mogeneous subportfolios. The approach put forward in this paper instead remains feasible for large

and heterogenous portfolios (or financial systems). Furthermore, compared to the one-factor asset

return decompositon adopted by Tarashev et al. (2010) the utilisation of a multi-factor model allows

for a more risk-sensitive modelling of systemic risk.

Another proposal how to measure financial institutions’ contribution to systemic risk is put for-

ward by Acharya et al. (2010). Their marginal expected shortfall measure is conceptually related to

our approach but defined differently: In order to facilitate its computation they define this measure

by the worst 5% net equity returns at daily frequency. In this paper we use the marginal expected

shortfall in the sense of the Euler allocation principle, based on the portfolio risk characteristics at a

certain point in time, instead of a time-series estimate based on past equity returns. Acharya et al.

(2010) also embed their risk measure into an economic model to determine an optimal taxation

policy for systemic risk which is an extension not addressed in our paper.

Since the focus of this paper is on the application of the credit portfolio methodology using market

and balance sheet data, we refer to the IMF’s GFSR (IMF, 2009) as well as the references therein for

more research on network analysis and domino effects. Moreover, De Bandt and Hartmann (2000)

provide a comprehensive survey on the theoretical and empirical literature on contagion in banking

and financial markets as well as in payment and settlement systems. See also Nier et al. (2007)

for further useful references. An example of an integrated systemic risk framework which combines

standard techniques from market and credit risk management with a network model of a banking

system is the OeNB’s Systemic Risk Monitor, see Boss et al. (2006).

3. Model set-up

We think of a financial system as a portfolio of n assets, the assets being financial institutions. The

portfolio’s loss distribution describes the risk of the entire financial system. Losses can only be

induced by a distress of one or more institutions included in the portfolio. For the i−th institution,

the exposure at distress, EADi, is defined as the book value of the institution’s liabilities that are

defined in this paper in nominal terms and after deducting capital. Then wi = EADi/
∑n

i=1EADi

denotes the relative portfolio weight of the ith institution. The loss given distress, LGDi, represents

a fraction of the total liabilities which specifies the potential costs of the resolution or a bail-out of

the distressed financial institution. An event of distress occurs at a predefined time horizon with

the unconditional distress probability pi. The event of distress is captured by the Bernoulli random

variable Di ∼ Be(pi). In the spirit of the structural credit risk framework, we define distress as an

event when the asset return of a financial institution hits or falls below its default threshold at a

pre-specified time horizon. The default threshold specifies the point where the institution has to

either enter resolution or be bailed out.
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To complete the asset value model, we further assume that the standardised asset returns {Xi}i=1,...,n

are multivariate normally distributed with a full-rank correlation matrix. To explain where the lin-

ear dependence results from, we decompose {Xi} into a systematic and an idiosyncratic component

by means of a multi-factor model. Following Pykhtin (2004) we assume that the asset return of a

financial institution i depends on a composite systematic risk factor Yi which is a convex combina-

tion of a set of independent standard normally distributed systematic risk factors {Zk}k=1,...,m with

m � n. The idiosyncratic part of the asset return variation is captured by an independent standard

normally distributed shock εi.

The model framework for the risk drivers {Xi}i=1,...,n, the distress indicators {Di}i=1,...,n and our

target variable – the portfolio loss rate PL – can now be formally summarised as follows:

Xi = aiYi +
√

1− a2i εi, ai ∈ (0, 1) (3.1)

Yi =

m∑
k=1

αikZk,

m∑
k=1

α2
ik = 1 (3.2)

Zk, εi
iid∼ N(0, 1) for all k = 1, . . . ,m and i = 1, . . . , n

Di = 1 ⇔ Xi ∈
(−∞,Φ−1(pi)

]
(3.3)

PL =

n∑
i=1

wi · LGDi ·Di. (3.4)

In the expressions above, the factor loading ai specifies the sensitivity of the particular institution

to the systematic risk factor, and the asset correlation between distinct institutions i and j is given

by ρi,j = aiajρYi,Yj , where ρYi,Yj =
∑m

k=1 αikαjk denotes the correlation between the two composite

factors.

As already mentioned in section 1, we are primarily interested in the ES at a confidence level q

as a coherent measure of the portfolio tail risk. But for the sake of completeness, we also report

the results on VaR which defines the threshold for the ES measure. Let us denote the (discrete)

cumulative distribution function of the portfolio loss rate by FPL(·) and its quantile function by

F−1
PL(·). Then, VaR and ES can be defined as follows:

V aRq(PL) = F−1
PL(q) = inf

{
x ∈ [0, 1] : FPL(x) � q

}
(3.5)

ESq(PL) =
1

1− q

∫ 1

q
V aRt(PL)d t. (3.6)

As an alternative to (3.6), Kalkbrener (2005, p 434) considers an expression which turns out to

be more instructive especially for simulation purposes later in this paper. As shown in Acerbi and

Tasche (2002), if the distribution of portfolio loss were continuous, (3.6) would coincide with the

tail conditional expectation (TCE) defined as

TCEq(PL) = E
[
PL | PL � V aRq(PL)

]
. (3.7)

For a discrete loss distribution, however, the expression above has to be augmented with a correction

term which adjusts the TCE measure upwards if the probability of the portfolio losses at the point

5



V aRq(PL) does not coincide with q:

ESq(PL) = E
[
PL | PL � V aRq(PL)

]
+

1

1− q
V aRq(PL)

[
FPL

(
V aRq(PL)

)− q
]
. (3.8)

After computing the overall tail risk, we turn to the calculation of individual risk contributions

which satisfy the full allocation property, i.e. their sum equals the total system-wide risk. For this

purpose we use the Euler allocation or the marginal risk contributions based on the derivatives of

the tail risk measure with respect to the portfolio weights of individual positions.

The marginal contributions measure the impact of a small change in the portfolio weight of a

bank on the total tail risk of the whole portfolio. The Euler allocation principle has proved useful in

portfolio-oriented risk management, particulary for the purpose of economic capital allocation, per-

formance measurement, portfolio optimisation or risk-sensitive pricing. According to Denault (2001)

the Euler allocation can also be motivated by game theory as the partial derivatives correspond to

the Aumann-Shapley value that lies in the core of a coalitional game. For more information on

the concept of Euler contributions as well as related literature and economic motivation see Tasche

(2008). For an axiomatic approach to coherent risk measures and capital allocation see also Kalk-

brener (2005).

In the following two sections we consider two methods to compute the portfolio risk and banks’

risk contributions: firstly by simulation and afterwards by an analytical approximation.

4. Measuring and allocating systemic risk by simulation

In this section we develop a simulation algorithm for the estimation of the portfolio tail risk as well

as for the risk contributions of individual financial institutions. Initially, we touch on the issue of

rare-event simulation by means of importance sampling (IS) in subsection 4.1 following which we

present the IS estimates for the tail risk and risk constributions in subsection 4.2.

4.1. Importance sampling

Although it appears straightforward to compute an estimate of the portfolio tail risk by simulation,

the brute-force MC technique may fail for such rare events as PL � V aRq(PL). To clarify this

point, let us consider the issue of estimating the small probability of a rare event which is, concerning

simulation efficiency, equivalent to estimating VaR. That probability can be represented in terms of

the expectation:

Pr {PL > xq} = E
[
11(xq ,1](PL)

]
, (4.1)

where xq is close to 1 so that Pr {PL > xq} is close to zero and 11A(Y ) denotes an indicator function:

11A(Y ) =

⎧⎨⎩1 for Y ∈ A,

0 otherwise.
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Since the law of large numbers states that the sample mean converges to the expected value, the

MC estimator seems to be a natural choice in the case of (4.1) when simulating PL.

Assume now that the small probability in our example coincides with 1 − q. Being the sample

mean, the MC estimator of 1−q is unbiased and normally distributed with variance q(1−q)/s, where

s denotes the number of simulation runs. This means, for instance, that for the estimation of 1−q =

0.001 with at most 5% relative error at the 95% confidence level, more than 1.5×106 simulation runs

are necessary. Due to the fact that only a small fraction of replications (100(1 − q)% on average)

produces portfolio losses equal to or exceeding V aRq, draws like Di = 1 | PL = V aRq(PL) would

be even rarer. Against this background the estimation of VaR contributions by MC would involve

either unacceptable runtimes or immense estimation errors. As has already been pointed out by

Merino and Nyfeler (2004) and Glasserman (2006) among others, a similar problem arises when

estimating ES contributions. In order to reduce estimation errors, a plain MC simulation algorithm

has to be modified, increasing the frequency of rare events while ensuring the estimator remains

unbiased.

A promising technique for simulation of rare events and, therefore, for estimation of the tail risk

as well as the risk contributions is importance sampling. For the Gaussian conditional indepen-

dence framework, Glasserman and Li (2005) have already developed an appropriate two-stage IS

algorithm leading to an asymptotically efficient estimator for a small probability like (4.1). More-

over, Glasserman (2006) provides further results on the IS estimation of VaR, ES and corresponding

tail risk contributions. In appendix A we describe in detail an adoption of the aforementioned IS

methodology to the model presented in section 3. In subsequent appendix B we provide the IS sim-

ulation algorithm for the portfolio loss distribution. On the basis of that simulated distribution, tail

risk measures and corresponding risk contributions can be estimated, as described in the following

subsection.

4.2. Estimating tail risk and risk contributions

To estimate the VaR at a confidence level q, as defined in (3.5), the following expression can be

used:

V̂ aRq(PL) = inf
{
x ∈ [0, 1] : F̂PL(x) � q

}
. (4.2)

For the ES, according to (3.8), we obtain the estimator:

ÊSq(PL) =

∑s
k=1 PLk 11

[V̂ aRq(PL),1]

(
PLk
)
l
(
PLk
)∑s

k=1 11[V̂ aRq(PL),1]

(
PLk
)
l
(
PLk
)

+
1

1− q
V̂ aRq(PL)

[
F̂PL

(
V̂ aRq(PL)

)− q
]
. (4.3)

Moreover, the results on the additive contributions associated with quantile-based risk measures

conducted by Tasche (2000) give us an idea of suitable IS estimators for the tail risk contributions.

The author has proven that under certain continuity conditions imposed on the joint probability

distribution of the individual loss variables Li := wi · LGDi ·Di, the marginal contributions derived
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via differentiation of VaR and TCE can be represented in terms of the conditional expectation:

wi
∂

∂wi
V aRq(PL) = E

[
Li | PL = V aRq(PL)

]
(4.4)

and

wi
∂

∂wi
TCEq(PL) = E

[
Li | PL � V aRq(PL)

]
. (4.5)

Obviously, the risk contributions given above fulfil the full allocation condition. Thus, addition-

ally taking a discontinuity correction for the ES into account, we are able to define the following

importance sample estimators for the additive tail risk contributions:

V̂ aRq(Li | PL) =

∑s
k=1wi · LGDi ·Dk

i 11{V̂ aRq(PL)}
(
PLk
)
l
(
PLk
)∑s

k=1 11{V̂ aRq(PL)}
(
PLk
)
l
(
PLk
) (4.6)

and

ÊSq(Li | PL) =

∑s
k=1wi · LGDi ·Dk

i 11[V̂ aRq(PL),1]

(
PLk
)
l
(
PLk
)∑s

k=1 11[V̂ aRq(PL),1]

(
PLk
)
l
(
PLk
)

+
1

1− q
V̂ aRq(Li | PL)

[
F̂PL

(
V̂ aRq(PL)

)− q
]
. (4.7)

Applying the IS technique outlined above, instead of a plain MC simulation, can lead to substantial

variance reduction when estimating VaR, ES and ES contributions. Note, nevertheless, that the

problem concerning an efficient estimation of VaR contributions persists, since individual losses

conditional on PL = V aRq(PL) are still rare.

5. Measuring and allocating systemic risk using an analytical

approximation

Although the number of simulation runs can be reduced considerably by using IS, the need for an

approximative analytical solution has been accentuated repeatedly in the related literature. For

the special case of a single-risk factor model and an asymptotically infinitely fine-grained portfolio,

there exists an analytical solution for portfolio VaR/ES as well as for the VaR/ES contributions, (see

Gordy, 2003). In this asymptotical setting, the idiosyncratic risk is diversified away and the risk con-

tributions are portfolio-invariant. In order to mitigate the underestimation of VaR in finite portfolios,

closed-form expressions for a granularity adjustment have been derived by Wilde (2001) and Martin

and Wilde (2002). Based on their results, Emmer and Tasche (2003) have determined contributions

to the adjusted approximate portfolio VaR. These contributions are portfolio-dependent due to the

existence of an undiversified idiosyncratic risk.

The adjustment methodology for VaR and ES has been extended more recently by Pykhtin (2004),

who presented an analytical method for an approximative calculation of portfolio VaR and ES in

the case of a multi-factor Merton framework. Based on his results we derive closed formulae for

Euler contributions as partial derivatives of the approximated VaR and ES. Pykhtin’s approach is

8



outlined in appendix C for completeness. The basic idea of his approximative solution is to redefine

the multi-factor model presented in section 3 in terms of a comparable one-factor model whose

implied portfolio loss distribution is similar to the original one. For this purpose a new “effective”

systematic factor Ȳ is introduced:

Ȳ =

m∑
k=1

βkZk,

m∑
k=1

β2
k = 1. (5.1)

The tail risk measures can then be approximated by a formula containing Gordy’s approximation

for a limiting portfolio PL∞ within the one-factor framework (superscript Ȳ ) augmented by the

adjustment term which corrects for the systematic and idiosyncratic risks within the multi-factor

setting (denoted with Δ):

V aRq(PL) ≈ V aRapprox
q (PL) = V aRȲ

q (PL∞) + ΔV aRq(PL)

and

ESq(PL) ≈ ESapprox
q (PL) = ESȲ

q (PL∞) + ΔESq(PL).

The components of these formulae are given in appendix C, equations (C.6, C.7) and (C.14, C.15)

respectively.

The analytical approximations above can be used to derive the additive contributions associated

with the portfolio tail risk measures. Under the assumptions of an infinitely fine-grained portfolio

and only one systematic risk factor, the contribution of an institution i to the VaR of the limit-

ing portfolio, as defined by equation (C.6), would be completely portfolio-invariant because of the

following result:
∂

∂wi
V aRȲ

q (PL∞) = LGDi · pi(yq). (5.2)

The yq denotes a realisation of Ȳ associated with the (1 − q) quantile of its Gaussian probability

distribution: yq = Φ−1(1− q) and pi(yq) is the probability of distress conditional on Ȳ = yq:

pi(yq) = Φ

⎛⎝Φ−1(pi)− biyq√
1− b2i

⎞⎠ . (5.3)

In addition to the stand-alone marginal risk contribution, a portfolio-dependent contribution arises

9



according to equation (C.7) by reason of the following multi-factor granularity adjustment:

∂

∂wi
ΔV aRq(PL) =

{
2
[(
PL∞(yq)

)′]2}−1

×
{
− ∂

∂wi

(
var(PL | Ȳ = yq)

)′(
PL∞(yq)

)′
+
(
var(PL | Ȳ = yq)

)′ ∂

∂wi

(
PL∞(yq)

)′
+

[
∂

∂wi

(
var(PL | Ȳ = yq)

)(
PL∞(yq)

)′ − var(PL | Ȳ = yq)
∂

∂wi

(
PL∞(yq)

)′]

×
((

PL∞(yq)
)′′(

PL∞(yq)
)′ + yq

)
+ var(PL | Ȳ = yq)

(
PL∞(yq)

)′ ∂

∂wi

((
PL∞(yq)

)′′(
PL∞(yq)

)′
)}

.

(5.4)

The derivatives on the right-hand side of equation (5.4) are given by in appendix D.

In order to calculate an approximation of the marginal VaR contribution of the ith bank as a

percentage of its own exposure, we just need to add up (5.2) and (5.4):

∂

∂wi
V aRq(PL) ≈ ∂

∂wi
V aRapprox

q (PL) =
∂

∂wi
V aRȲ

q (PL∞) +
∂

∂wi
ΔV aRq(PL). (5.5)

The approximative VaR contributions defined as

V aRapprox
q (wi | PL) = wi

∂

∂wi
V aRapprox

q (PL), (5.6)

satisfy the full allocation property:

V aRapprox
q (PL) =

n∑
i=1

V aRapprox
q (wi | PL).

Similar to the previous results, risk contributions based on ESȲ
q (PL∞) in (C.14) would be

portfolio-invariant:
∂

∂wi
ESȲ

q (PL∞) =
LGDi

1− q
CGauss

(
pi, 1− q; bi

)
. (5.7)

An additional adjustment term corrects for the systematic risk within the multi-factor setting and

for the undiversified idiosyncratic risk. This adjustment term can be obtained by the partial differ-

entiation of equation (C.15) with respect to the exposure weights:

∂

∂wi
ΔESq(PL) = − φ(yq)

(1− q)

[
2
(
PL∞(yq)

)′]−1

×
[

∂

∂wi

(
var(PL | Ȳ = yq)

)(
PL∞(yq)

)′ − var(PL | Ȳ = yq)
∂

∂wi

(
PL∞(yq)

)′]
.

(5.8)
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So we can approximate the ES contribution as a percentage of institution i’s exposure

∂

∂wi
ESq(PL) ≈ ∂

∂wi
ESapprox

q (PL) =
∂

∂wi
ESȲ

q (PL∞) +
∂

∂wi
ΔESq(PL) (5.9)

or alternatively as a percentage of the total portfolio exposure

ESapprox
q (wi | PL) = wi

∂

∂wi
ESapprox

q (PL). (5.10)

Again, the approximative ES contributions in (5.10) satisfy the full allocation property:

ESapprox
q (PL) =

n∑
i=1

ESapprox
q (wi | PL).

6. The Performance of the IS method versus Pykhtin’s approximation

In this section we compare the performance of the IS method versus Pykhtin’s approximation.

This analysis is based on empirical data in order to make it more realistic and and to increase its

validity. The empirical data are described in subsection 6.1 and will be used again in later sections.

Subsection 6.2 contains the main results.

6.1. Empirical expected default rates and other model inputs

The dataset used for the empirical analysis comprises a sample of the world’s largest banks over

a time span from January 1997 to January 2010. The number of banks varies between 54 and 86

depending on IPOs, mergers and data availability. The one-year probability of default is estimated

on a monthly basis by the expected default frequency (EDF) from Moody’s KMV CreditEdge. The

EDFs range from 0.01% to 19% with the median value 0.07% before September 2008 and 0.32%

afterwards. We set the EAD equal to the book value of the bank’s liabilities, also obtained from

CreditEdge on a yearly basis. We transform the yearly observations into monthly data by linear

interpolation. Missing a reliable estimate of a bank’s LGD, we use the value of 100% for all banks2

which implies the maximum loss rate. Since the LGD is modelled as a deterministic variable, the

risk contributions are linear in LGD and, therefore, its specific number does not affect our main

results.

We define the systematic risk factors by the geographical region in which the bank is headquar-

tered. Table 1 presents summary statistics of the size distribution of banks in the sample across 6

regions (Europe, North America, South America, Africa, Japan, Asia and Pacific excluding Japan).

The banks listed in the table account for about 2/3 of the worldwide banking industry assets in

2007/2008 (approximated by assets of the largest 1,000 banks as reported by IFSL (2010)).

We have set the asset return correlation within the groups to the asset return correlation average

of 42%, estimated for large banks on the basis of the Moody’s KMV GCorr module, as reported

by Tarashev et al. (2010, p 21). It implies homogenous factor loadings ai =
√
0.42 ∀i. The hetero-

geneity in the dependence structure arises from the correlation between the region-specific systematic

2Tarashev et al. (2010) set the LGD-rate to 55% without giving any reasons.
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Table 1: Liability (LBS) size distribution of all banks within the sample at the beginning of 2008,
aggregated by country.

Region Country Number of banks Aggregate LBS

billion USD % of total
EU Austria 1 265 0.49

Belgium 2 1,286 2.39
Denmark 1 606 1.12
France 3 5,571 10.33
Germany 4 4,155 7.71
Greece 1 111 0.21
Iceland 1 64 0.12
Italy 3 2,146 3.98
Netherland 2 3,179 5.90
Norway 1 244 0.45
Russia 1 146 0.27
Spain 3 1,988 3.69
Sweden 3 1,122 2.08
Switzerland 2 3,079 5.71
United Kingdom 6 8,758 16.24

AMN Canada 5 2,093 3.88
USA 11 7,274 13.49

AMS Brazil 3 352 0.65
AFR South Africa 3 322 0.60
JP Japan 5 4,577 8.49
AS&P Australia 5 1,589 2.95

China 10 3,456 6.41
Hong Kong 2 212 0.39
India 2 305 0.57
Singapore 3 353 0.65
South Korea 3 654 1.21

Total 86 53,907 100

risk factors. The off-diagonal elements of their correlation matrix have been estimated from monthly

returns of the Dow Jones Total Market (DJTM) total return indices for the banking sector in the

respective geographical regions, obtained from Datastream. The estimates are reported in table 2.

They reveal substantial differences in the correlation between geographical regions which support

our choice of a multi-factor instead of a single-factor model.

6.2. Performance results for the ES estimation

We compare how the proposed simulation and analytical techniques perform with regard to the

calculation of the portfolio tail risk and marginal risk contributions by a three-step approach. Firstly,

we run 100 plain MC and IS simulation scenarios, each scenario comprising 10, 000 independent

replications of the portfolio loss variable PL. This enables us to compare the accuracy of the

simulation methods and to compute pointwise empirical confidence intervals for the quantities under

consideration. Secondly, we approximate the tail risk and risk contributions analytically based on

the results in section 5. Thirdly, we check whether these approximated values fall into the confidence
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Table 2: The matrix of estimated Pearson’s correlation coefficients for the composite factors,
ρYreg(i),Yreg(j)

. All p-values are less then 1%

EU AMN AMS AFR JP AS
EU 1.00 0.80 0.65 0.63 0.44 0.85
AMN 1.00 0.42 0.44 0.39 0.73
AMS 1.00 0.50 0.46 0.68
AFR 1.00 0.32 0.62
JP 1.00 0.45
AS 1.00

Figure 1: Log-lin graph of the portfolio loss tail function in September 2008 estimated via Monte
Carlo simulation and importance sampling. In each case, the three curves show the
mean and a pointwise 95% confidence interval computed on the basis of 100 independent
scenarios.
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intervals, obtained in the simulation.

Figures 1 and 2 exemplify the considerable gain in precision compared to a plain MC simulation

when estimating the loss distribution and the portfolio tail risk by means of IS.

Figure 3 compares the performance of the MC and IS estimators for the ES contributions. The

box-and-whiskers plots clearly show a substantial reduction in variability using IS. The same is

true for the estimators of the VaR contributions, although in this case a meaningful estimate via

MC simulation would require much more replications due to the conditioning on a rare event. We

refer to Glasserman (2006) for further numerical examples on the performance of the IS algorithm

concerning the problem of estimating the tail risk contributions for stylised credit portfolios.

The analytical method performs reasonably well for the calculation of portfolio tail risk with

a tendency to underestimate. For 59% of observations in our case study the approximated value

lies within the 90% error-interval of the IS simulation, as shown exemplary in figure 4 for the 20
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Figure 2: Comparison of Monte Carlo (MC) and importance sampling (IS) estimates for value at
risk (VaR) and expected shortfall (ES) in September 2008. The histograms are computed
on the basis of 100 independent scenarios.
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Figure 3: Comparison of the summary statistics for expected shortfall (ES) contributions in Septem-
ber 2008, estimated via Monte Carlo (MC) and importance sampling (IS). The box-and-
whiskers plots are based on 100 independent scenarios. The five largest contributions are
given as a fraction of the total liabilities of 84 banks in the portfolio.
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Figure 4: Comparison of expected shortfall (ES) values estimated via importance sampling with
those approximated analytically. The date is always given in the lower right-hand corner.
ES is given as a percentage of the total portfolio liabilities. For each month the analytically
approximated portfolio ES is indicated by a triangle pointing down to its numerical value,
whereas the patterns enclose 90% of all 100 sampled ES values with the mean indicated
by a circle. Only the 20 latest observations are shown.
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latest observations. Additionally, figure 5 illustrates the analytically approximated ES in comparison

with the IS-based estimate along with the relative difference between them. The Pykhtin’s formula

exhibits the poorest performance in the period of a relatively low system-wide risk. The best

performance is on the contrary at the peak of the crises. A more detailed performance test for the

multi-factor-adjustment technique was carried out by Pykhtin (2004). Among other things, Pykhtin

shows that the accuracy of the approximation improves as the risk factor correlation increases and

as the relative weight of the largest exposure in the portfolio decreases.

Regarding the approximation of the individual risk contributions derived in section 5, we report

in figure 6 results on the relative difference between the IS-estimated and analytically approximated

ES contributions for some of those time periods when the relative difference at the portfolio level

was less than 1%. The relative difference for most of the contributions presented is smaller than

5%.

Whereas the analytical approximation of the portfolio tail measures performs well, the results

of the analytical approximation of individual risk contributions should be interpreted with caution.

While the precision of the IS estimator can be improved by simply performing more simulation runs,

the analytical results depend on the portfolio granularity and the correlation structure. Although

the contributions calculated using marginal method are generally guaranteed to be positive for

positively correlated risk, it may not longer be the case within the Pykhtin’s modified setting.

Due to the changes in the correlation structure in the course of the model transformation from

the multi-factor (3.1) to the one-factor (5.1) setting, the impact of the largest exposures in the

portfolio may be overvalued. This effect would then be compensated by reduced and possibly even

negative contributions of small-sized exposures in order to satisfy the additivity property. Thus,
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Figure 5: Comparison of expected shortfall (ES) values estimated via importance sampling with
those approximated analytically. ES is given as a percentage of the total portfolio liabili-
ties. Also plotted is the relative difference between the two estimates.
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Figure 6: The relative difference (in percent) between the contributions to the expected shortfall
estimated via importance sampling and those approximated analytically. The banks are
on the x-axis.
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the analytical approximation for the risk contributions can, for instance, be used to get preliminary,

approximative results when accuracy is not the issue but only the computational burden.

7. Drivers of systemic risk and systemic importance

The impact of the risk drivers within a credit portfolio framework has been analysed in great detail

in the literature on credit risk. In context of systemic risk, Tarashev et al. (2010) presented some

stylised examples for hypothetical financial systems in order to examine the sensitivity properties

of the system-wide ES. Thereby the authors applied the one-factor Merton/Vasicek framework with

common factor loadings. The key messages from their work were:

• The level of systemic risk increases with the individual probabilities of default.

• Greater bank concentration of the financial system, caused either by the increasing disparity

of the relative size of banks or by their decreasing number, raises systemic risk.

• Higher sensitivity to the common factors (captured by the asset correlation) increases the

likelihood of joint failures and raises the tail risk.

In this section we further explore the impact of the individual probabilities of default, the relative

size of institutions and the asset correlation on the portfolio tail risk measure.

We can confirm the first finding of Tarashev et al. (2010) by using the empirical dataset and model

inputs from section 6.1. Figure 7 shows the ES over the sample period and the weighted average

of the underlying EDF figures. The ES matches very closely the pattern of the average estimated

probabilities of default. Only if we assume a constant EDF, the ES would follow the pattern of

banks’ liabilities, which had been more or less steadily increasing until mid-2008.

Figure 7: Evolution of the portfolio expected shortfall (ES, black lines, left axes) expressed as a
percentage of the total portfolio liabilities (LBS). Also plotted is the weighted average of
EDFs (gray lines, right axes); the weights are the shares of individual banks in the total
LBS.
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Figure 8: Systemic importance of two groups of banks with different sizes(left-hand plot) and dif-
ferent exposure to the single systematic factor (right-hand plot). Each of the two groups
accounts for half of the total portfolio exposure.
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Regarding the bank concentration of the financial system, we can isolate the impact of the relative

size for different levels of default probabilities by a simulation exercise based on a stylised portfolio.

For this purpose we consider the special case of a single-factor model and define a stylised banking

system populated by 66 banks which all share the same probability of default. All the banks can be

separated into two groups, each accounting for 50% of the overall liabilities. We define one group of

62 equally-sized small banks and another group of 4 equally-sized big banks. To keep the exposures

to the single systemic factor constant across the system, we set the pairwise asset correlation to 42%.

The results for this financial system are presented in the left-hand panel of Figure 8. Notwithstanding

the fact that both groups are equally sized, the group of big banks accounts for more than 50% of

the overall ES according to its greater bank concentration. This effect is even more distinctive for

small probabilities of default (below 1%) which are typical for the banking sector. Hence, among

relatively sound institutions the banks with larger exposures at distress affect the overall tail risk

disproportionately more heavily. Rising probabilities of default ceteris paribus lead to a higher

overall tail risk and have a positive impact on the systemic importance.

For a heterogenous empirical portfolio, like the one introduced in section 6.1, it is more difficult to

distinguish between the impact of different risk drivers. Therefore, we estimate the cross-sectional

Spearman’s correlation3 between an institution’s contribution to the expected portfolio loss (which

is just the product of the institution’s relative size and its default probability) and its share in

the portfolio ES. The correlation coefficients rage between 81% and 96% with the median of 91%.

3Note, that the Spearman’s correlation increases in magnitude as the two variables become closer to being perfect
monotone (possibly non-linear) functions of each other.
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Thereby the impact of the size is more pronounced (the medium correlation between the size and

the ES contribution is about 90%) than the impact of a bank’s default risk (the medium correlation

in this case is about 26%). These results are in line with those for the stylised portfolio.

We use the stylised portfolio again in order to explore the impact of the sensitivity to the common

factors which refers to the third finding of Tarashev et al. (2010). For this purpose we isolate the

impact of the asset correlation as a risk driver of the systemic risk and banks’ systemic importance.

We divide the portfolio into two homogeneous groups comprising 33 equally-sized banks each. The

first group is only moderately exposed to the systematic factor with the pairwise within-group asset

correlation of 20%. The banks assigned to the second group are instead highly correlated with a

coefficient of 60%. The right-hand panel of Figure 8 illustrates the intuitive result that a higher

sensitivity to the systemic factor, i.e. a higher asset correlation, is linked to a higher systemic

importance, since the probability of joint failures increases. This leads to a higher level of tail risk.

Again, it is worth noting that the tail risk contribution of the group of banks with a high sensitivity

to the systemic risk factor increases faster within the range of small default probabilities than is the

case for the other group.

Turning back to the empirical dataset from section 6.1, we investigate additionally the sample path

of the banks’ relative ES contributions in comparison with the banks’ relative size and their EDFs.

These variables are plotted in Figure 9 for the 15 banks with the historically largest risk contributions

within the sample period. The comparison between size and systemic risk contribution of those major

banks along the time axis shows that their relative ES contribution often considerably exceeds their

share in the total liabilities, indicating an overproportional contribution to the risk of the whole

system. Because the level of the system-wide tail risk is closely related to the overall default risk in

the system, as has already been shown in Figure 7, the changes in the levels of banks’ contributions

to the tail risk are linked to the changes in the individual default probabilities. The corresponding

correlation estimates confirm that statement: Apart from one bank with a significant negative

coefficient and 6 banks with insignificant coefficients (at the 95% level), Spearman’s correlation along

the time axis ranges from a minimum of 18% to a maximum of 96% with the median observation of

65%.

Summarising, our findings point to the following interpretation of the risk drivers’ impact. Firstly,

changes over time in the joint probabilities of default affect changes in the overall level of the systemic

risk much more than changes in the size distribution of the portfolio. Therefore, the financial

soundness of the institutions under consideration and the correlations between them seem to be the

main drivers of the systemic risk. Secondly, given a particular level of tail risk at a particular point

in time, the distribution of the risk contributions depends strongly on the size distribution among

the banks.

Overall, the link between the size of a financial institution and its systemic risk contribution is

not that obvious due to an interplay of risk drivers in both dimensions: cross-sectional and over

time. Despite a pronounced positive relation between the size of an institution and its contribution

to systemic risk in the cross-sectional context, size alone cannot be considered as a reliable proxy

of a bank’s systemic importance. When the size of a bank increases, its systemic importance can

increase or decrease depending on changes in its own and other institutions’ risk drivers. In the

static context likewise, not only a bank’s individual characteristics affect its systemic importance,
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Figure 9: Dynamics of the banks’ individual shares in the portfolio expected shortfall (solid black
lines) in comparison with the EDFs (solid gray lines) and individual shares in the total
portfolio liabilities (dashed lines).
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but also the composition of the system which the bank is a part of. This can be seen, for instance,

from equation (C.10), which is a part of the approximative solution for an ES contribution (5.9): A

bank’s contribution depends on the size of other banks in the system as well as on the respective

default probabilities and asset correlations with another banks. These findings confirm the need

to study systemic risk in a portfolio context instead of on a single entity basis. Tailoring macro-

prudential instruments simply to the size of a financial institution would be at best an incomplete

assessment of its systemic risk. It would miss key aspects of the risk that it can pose to the real

economy and society.

8. Policy tools – A capital charge for systemic risk and a mitigant of

procyclical effects

A macro-prudential regulation should address both dimensions of the systemic risk, as is underlined

by Borio (2009) among others:

The cross-sectional dimension, addressed in subsection 8.1, relates to the distribution of the

aggregate risk in a financial system at a given point in time. The corresponding policy issue consists

in the calibration of prudential instruments according to the level of the overall risk in the system

and according to the contributions of individual institutions to the system-wide tail risk.

The time dimension, addressed in subsection 8.2, covers the evolution of the aggregate risk over

time. The corresponding policy issue is to find a way to reduce the possible procyclicality of regu-

latory tools based on a measure of the system-wide financial risk.

8.1. Cross-sectional implementation

For implementing a systemic risk charge in the cross-section, a key challenge is how to internalize the

negative externalities caused by financial institutions. This goal is achieved by using the institutions’

contributions to the systemic risk as the building block. In this section we put forward a stylised

example illustrating how a capital surcharge for systemic-risk can help the regulator to reduce the

tail risk amount.

We consider the situation arising in January 2009 as an example. At this point of time, the

portfolio comprises of 80 banks from the sample in section 6.1. The ES of the portfolio amounts to

31.38% of the system-wide liabilities or $17,447bn. Individual ES contributions vary between 0.03�
and 4% or $1.8bn and $2,230bn.

As the measurement and allocation of systemic risk involve model uncertainty and estimation

errors, it may be advisable not to require a bank-specific surcharge on a continuous scale. Instead, a

less granular approach may be preferable: For instance dividing the institutions into three different

categories A, B and C according to systemic risk ratings.4 We apply a simple k-means clustering

procedure on the ES contributions in order to define those categories. The k-means method aims

4The IMF (2010, Chapter 2) presents an approach under which regulators assign systemic risk ratings to each
institution based on the amount of system-wide capital impairment that a hypothetical default of each institution
would bring to bear on the financial system. Institutions with a higher systemic risk rating would be assessed as
having higher capital surcharges. The level of capital surcharges would be predetermined – perhaps having to be
agreed upon in international forums.
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Figure 10: The landscape of systemically important banks before and after the policy intervention.
3 groups of banks have been identified by the k-means clustering method according to
their contributions to the portfolio ES in January 2009. The banks are on the x-axis.
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to partition the dataset into k groups. The grouping is done by minimising the sum of squares

of distances between the data points and the clusters’ centroids. The results are illustrated in the

left-hand panel of figure 10.

Let us categorise the four banks belonging to the first group and indicated by diamonds as A-

rated, “highly systemically important” institutions. This group holds 20% of the total assets of the

system and contributes 38.8% to the overall ES. The individual ES contribution of every bank in

this group equals or exceeds 2% of the portfolio exposure. The squares mark the second category

comprises 16 B-rated, “moderately systemically important” banks. They individually contribute

between 0.5% and 1.5% to the portfolio exposure. This second group of banks holds 47% of total

assets and shares 43.5% of the overall tail risk. The remaining 60 banks are indicated by solid

circles. They share 34% of total assets and 17.7% of the portfolio ES. Those banks account for risk

contributions of less than 0.5% each and will be denoted as C-rated, “systemically less relevant”

institutions.

We assume that the capital held by banks equals the amount of capital required by the regulator.

Therefore, any capital charge for systemic risk will require an increase of capital and cannot be drawn

from an existing “free” capital buffer on top of the regulatory minimum requirements. Furthermore,

we assume that the systemic risk charge does not affect neither the size of a bank’s balance sheet

nor its exposure to the systematic factors (or asset correlations). The new capital requirements

only affect the debt-to-equity ratio as the banks substitute their (short-term) debt by capital. In

this case, the rising capital charge would leave the asset value of banks unchanged according to the

Modigliani-Miller capital structure irrelevance principle.

Within Merton’s framework (Merton, 1974), the following functional link between default proba-
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Figure 11: Mapping the distance to default into the EDF for a one-year time horizon.
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bility and leverage ratio applies

pi = Φ

(
ln(DPTi/AV Li)− μAV Li

σAV Li

)
,

where DPT denotes the default point, AVL – the market value of assets, μAV L – the expected asset

return and σAV L – the volatility of asset value. DPTi is defined in such a way, that a drop in

the market value of bank i’s assets below DPTi triggers the default of the bank. Moody’s KMV

model, which builds on Merton’s framework, calibrates DPT as a weighted average of long-term and

short-term liabilities. The model operates with the so called distance to default (DtD) :

DtDi = − ln(DPTi/AV Li)

σAV Li

. (8.1)

Using the CreditEdge data on EDFs and DtD, we can approximate the mapping function between

DtD and EDF as shown in figure 11.

We further assume that for each rating category, national regulators have agreed upon a certain

level of capital surcharges. In our simplified example, additional capital requirements are set to

50% of the current microprudential capital requirements for “highly systemically important” insti-

tutions, to 25% for “moderately systemically important” institutions and to nil for “systemically

less relevant” banks.

According to the assumptions we made, the policy intervention results in a modified capital

structure of the systemically important banks, reducing their short-term debt, as well as the default

point, exactly by the amount of the additionally raised capital. By inserting the new DPT into (8.1)

we find the corresponding distance to default and map it into the EDF. We use the new set of

EDFs to run the analytical approximation of the portfolio ES and risk contributions after the policy

intervention.

The new input parameters change the overall view of the systemic risk landscape, as demonstrated

in the right-hand panel of figure 10. While the total capital in the system rises by 17% and the

liabilities decrease by 0.75%, the system-wide ES undergoes a reduction of 13.93%. In nominal
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terms, the amount of capital is increased by $418bn with the effect that the ES of the financial

system is reduced by $2,431bn. In other words the systemic risk charge reduces the system-wide

risk by a factor of about six. The marginal, USD-denominated tail risk contributions of the banks

with ratings A or B decrease. The total risk contribution of the A-rated banks declines by 30.91%

from $6,762bn to $5,165bn and the contribution of the B-rated banks by 12.71% from $7,598bn to

$6,741bn. In response to the changes in the portfolio structure, the total USD-denominated risk

contribution of the 60 “systemically less relevant” banks increases slightly by 0.70% from $3,088bn

to $3,109bn.

The empirical example relies on a relatively coarse differentiation between three groups of banks

depending on their systemic risk contribution. The capital surcharge has been set arbitrarily since

this example does not offer a methodology to determine a continuous, bank-specific systemic capital

charge (SCC). In the remaining of this section we present an approach that translates a bank’s

contribution to the ES of the financial system into a firm-specific capital charge.

We consider the i-th institution in the year t that is subject to minimum capital requirements

(MCR). The key idea is to charge the difference between a “pure” systemic risk contribution and

the original regulatory minimum capital requirement. If the micro-prudential regulatory capital

requirement exceeds the systemic risk contribution of a bank, then no add-on for systemic risk is

charged. The following equation summarises this definition of an ES-based SCC:

SCCi(PL, t) = max

{
EADi(t)

∂

∂wi(t)
ESq(PL, t)−MCRi(t), 0

}
. (8.2)

According to the figures on the total regulatory capital holding by the banks, for which we

could obtain the corresponding data from Bankscope, in 2006/2007 86% out of 63 banks were well

capitalised in the sense that they reported capital exceeding MRSi(t) + SCCi(PL, t) as defined

in (8.2). In 2008/2009 the same was only true for 15% out of 72 banks.

Additional capital requirements as in (8.2) are generally in line with the FSB’s recommendations

to strengthen the loss absorbency of systemically important banks (see FSB, 2010). However, as

pointed out by Gauthier et al. (2010), computing macro-prudential capital requirements is more

complex than computing risk contributions itself. The simple formula (8.2) suggests setting the

capital surcharges according to the currently observed capital levels and does not take into account

the subsequent changes in the overall systemic risk landscape. Once new capital requirements are

implemented, the banks’ probabilities of default (and potentially also the asset correlations) decline

resulting in lower tail risk and changed absolute and relative risk contributions. For this reason

Gauthier et al. (2010) suggest an iterative procedure to solve for the fixed point at which the capital

allocation in the system is consistent with the banks’ risk contributions. Such reallocation of the

capital not only means that the undercapitalised banks raise capital or de-leverage, but also that

the overcapitalised banks increase their leverage. A superior approach not simply based on the

reallocation of the given total capital, would require the knowledge of the optimal total level of

capital required in the banking system to withstand a predefined shock. The optimal amount of

capital is not necessarily to cover systemic risk completely, since the tail risk in the system can be
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far too high to be fully backed with capital.5 Therefore, the level of the total capital requirements

could be on average lower than the amount of the ES. This means that a certain fraction of the

systemic risk will still be borne by the public.

An alternative to a capital charge for system-wide risk can be regular payments by the systemically

important banks into a bank stabilisation fund. Although, this policy measure does not promote

strengthening of the banks’ capital basis, it has the advantage that the money paid into the fund

would be available in a crisis situation without the need to tap the taxpayer’s purse, e.g. for financing

certain bridge banks. A yearly amount to be paid into the fund could be attributed to individual

banks by employing the banks’ relative contributions to the tail risk of the whole banking sector.

Further refinements could be contemplated. For example, in order to relieve the strain on savings

banks and other mostly deposit-taking institutions, exposures could be reduced by the amount of

ensured deposits, which could be achieved by setting LGDi < 1 accordingly.

Both, a capital charge for system-wide risk and a stabilisation fee would reduce the competitive

advantages to become systemically important. The latter statement provides an incentive for the

systemically important institutions to reduce their share in the system-wide tail risk, which is a

desirable effect.

8.2. Smoothing the path of the tail risk measure over time

Within the presented framework the evolution of systemic risk over time is mainly driven by the co-

movement of the probabilities of default in the banking sector. In figure 7 we have seen how the use of

point-in-time estimates of the default probability based on market prices can induce procyclicality

in the tail risk measure. Market-based measures suggest that the system is strongest in times

when market volatility is below average and market participants accumulate large amounts of risk.

During an economic downturn or turbulent markets, probabilities of default (and asset correlations)

increase and the tail risk measure increases. The described effect by itself is not a problem when

considering the portfolio expected shortfall as a systemic risk indicator for the banking sector. In this

regard the utilisation of more forward-looking estimates of default probabilities would be rather an

advantage. However, in order to establish such macro-prudential tools as systemic capital surcharges

a procyclical pattern of the underlying risk measure may deem undesirable.

To take the procyclical effect into account, we suggest to use a time-varying level of the regulator’s

tail-risk tolerance q(t) for calculating expected shortfall, denoted by ESq(t). We suggest to link q(t)

to the cross-sectional exposure-weighted average of default probabilities in the banking sector:

q(t) = 1−
n∑

i=1

EADi(t)∑n
j=1EADj(t)

pi(t).

The confidence level for the portfolio under consideration ranges from 98.23% to 99.97% with a

median of 99.85%. It exceeds 99.9% during a boom in a financial sector and declines below this level

5During the time period under consideration the system-wide exposure (i.e.
∑n

i=1 LBSi(t)) increased from 23 to
100 percent of the global GDP whereas the amount of the tail risk was varying between 6.8 and 29 percent of the
global GDP according to ESq=0.999 or between 3.7 and 16 percent according to ESq(t), which we will introduce in
the following. The IMF’s figures on the world GDP were taken.
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Figure 12: Evolution of the portfolio ES calculated according to the time-varying confidence levels
q(t) (black line) versus ES at the constant confidence level q = 99.9% (gray line).
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otherwise. Therefore, it leans against the cycle and leads to the mitigation of possible procyclical

effects of regulatory tools based on the expected shortfall risk measure. For example, the capital

surcharges based on ESq(t) would be higher during the “good” times than the surcharges based on

ESq=0.999 and vice versa. This effect is indicated with shaded areas in figure 12. The figure illustrates

a considerable reduction in the variability of the portfolio-level ES, which we achieve by means of

the time-varying confidence level. The range of variation shrinks from 5.61% – 35.31% to 8.09%

– 17.81% of total liabilities. It is also worth noting, that using joint default probabilities instead

of individual ones and allowing for varying (default) correlations would amplify the observed effect

even further. Thereby, employing more forward-looking estimates of default probabilities instead

of the EDFs would help to rise or loosen capital requirements early enough in anticipation of an

upcoming boom or bust.

9. Summary and conclusions

Addressing the system-wide risk of a financial system by macro-prudential regulation requires an

approach that internalizes the potential costs of a systemic failure. We develop such an approach by

assessing the systemic risk of the financial system and by allocating this risk to individual banks while

the emphasis is on the allocation of systemic risk to individual banks. We employ for this purpose

the Euler allocation principle that is widely used in the risk management of financial institutions.

In this paper a financial system is modeled as a portfolio consisting of those banks in the global

financial system which may be deemed systemically relevant. From a public purse perspective we

model systemic risk in terms of the expected shortfall (ES) of this portfolio. The expected losses

conditional on exceeding a given level of regulatory tolerance reflect the potential costs posed to
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society in the low-probability event such as a systemic crisis, when the institutions may draw on the

(explicit or implicit) guarantees given on their debt.

The portfolio approach used has the additional advantage that the modelling requirements are

based on standard techniques in the risk management literature and the basic data requirements are

similar to those under the internal ratings based (IRB) approach of Basel II. For the major financial

institutions, the method provides an assessment tool of systemic importance, based on publicly

available information including market prices. Moreover, the model can be applied to smaller, not

publicly traded institutions as well, provided that their probabilities of default and their exposures

to common risk factors can be estimated based on available information.

After the systemic risk of the whole financial system has been quantified by means of the system-

wide ES, it is allocated to individual banks based on their marginal risk contribution to the system

wide risk. An important advantage of this method is the full allocation property, which means that

the systemic risk portions attributed to individual institutions equal the system-wide risk in the

aggregate. For the purpose of simulation of the portfolio loss function, upon which the calculation

of the portfolio ES and the risk contributions is based, we adopt a two-stage importance sampling

(IS) method. The main advantage of this variance reduction technique over the plain Monte Carlo

method is a considerable gain in efficiency when simulating such rare events as large portfolio losses.

We also derive an analytical solution for a fast approximation of risk contributions based on a

formula for the tail risk of a limiting portfolio with a multi-factor granularity adjustment.

Having conducted an empirical study based on a sample of large international banks, we find that

in the cross-sectional dimension the systemic importance of a financial institution is indeed tightly

linked to the institution’s relative size. But since the formal linkage is non-linear and portfolio-

dependent, size alone should not be considered as a reliable proxy of systemic importance. Other

risk drivers, such as institutions’ probabilities of default and their exposures to common risk factors,

have to be taken into consideration when assessing systemic importance within a portfolio framework.

As to the assessment of financial firms’ systemic importance, we can abstain from the binary

approach, whereby some firms would be considered of systemic importance and others would not,

which would leave room for regulatory arbitrage. By means of individual tail risk contributions, the

binary concept can be refined to a desirable degree either by introducing several systemic rating cat-

egories or by the utilisation of a direct functional link between an institution’s marginal contribution

to the systemic risk and its degree of systemic importance.

Relying on the marginal ES contributions as a measure of the institutions’ systemic importance,

policy tools can be adjusted accordingly. A possible capital-related policy option would be to

impose a systemic capital charge as the amount of the systemic risk contribution not covered by the

minimum capital requirements. Increasing overall risk-based capital requirements would reduce the

probability of systemically important banks becoming distressed. An alterative non-capital based

policy option involves charging a stabilisation fee that flows into a systemic risk fund. This would

cover the externalities in a systemic crisis and dampen the incentives of financial institutions to

become more systemically important. Thereby a total yearly amount that has to be paid into the

fund can be defined at the system level in a counter-cyclical manner. It will then be allocated among

the institutions according to their shares in the system-wide ES.

Regarding the time dimension of the systemic risk, we have successfully implemented a time-
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varying confidence level of the ES risk measure in order to smooth the evolution of the ES over

time. This approach can help to mitigate possible procyclical effects of regulatory tools based on

this measure of systemic risk.

Summarising, the portfolio approach, which we put forward for modelling a system of financial

institutions, can help to understand the complex nature of systemic risk regarding its cross-sectional

dimension as well as its evolution over time. Further theoretical and empirical research, however,

is required to ensure that systemic-risk related policy means are viable and robust before they are

put into practice.
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A. Importance sampling for the portfolio loss distribution

In general, there are many variance reduction techniques, such as (adaptive) importance sampling,

antithetic sampling, stratified sampling, and use of a control variable, see Fishman (1996, pp 255-

334) for further reading. But IS performs evidently better than other methods in the simulation of

rare events. Hall (1992, p 308) presents an efficiency diagram of a distribution approximation by

means of IS. The diagram shows an efficiency curve which is lowest at the center of the distribution

and diverging to +∞ in both tails. This observation demonstrates the considerable potential of

IS for the simulation of tail events and hence for the estimation of tail probabilities. Since the

asymptotic gain in performance obtained by using an efficient simulation algorithm is equivalent for

both a small probability and the corresponding quantile (Hall, 1992, pp 306 f), IS is a promising

simulation technique for the estimation of distribution quantiles, too. Furthermore, it makes the

calculation of tail risk contributions feasible. As explained by Egloff et al. (2005), IS rests on the

simple fact that the expectation under the original probability measure can be expressed as the

expectation under a different measure, provided that the change of measures is compensated by a

likelihood ratio. In this case, the likelihood ratio is given by the Radon-Nikodym derivative of the

original measure with respect to the alternative measure. Thus, the basic idea of the technique

is (i) to transform the distribution from which we draw samples in a way that rare events occur

more frequently and (ii) to weight each replication by a likelihood ratio in order to correct for the

accomplished change of the distribution.

In a two-stage IS algorithm by Glasserman and Li (2005), the multivariate Gaussian distribution

of the systematic factorsY = (Y1 . . . Yn)
′ should be initially transformed such that “bad” realisations

(negative values, in our case) occur more frequently leading to more defaults in the portfolio. This

first step is essential for a portfolio with a high positive default correlation, since defaults tend to

occur simultaneously, driven by systematic factors. The subsequent shifting of the conditional loss

distribution into the region [xq, 1] by increasing conditional default probabilities leads to a further

variance reduction. We describe the transformation od the conditional loss distribution first.

A.1. Tilting the conditional loss distribution

By shifting its probability mass into the tail we can make rare, large outcomes more likely. There-

fore, the objective is to transform the conditional loss distribution in a particular way, turning the

threshold xq into the distributional mean. In order to achieve this, exponential tilting can be applied,

as explained in Merino and Nyfeler (2004) and Glasserman and Li (2005). To conduct exponential

tilting, explicit formulae for the conditional loss probability function and its moment generating

function have to be known. They can easily be derived due to the conditional independence of the

individual loss variables.

The probability function of the loss distribution conditional on a realisation of the systematic

factors is a product of n independent Bernoulli variables:

fPL|Y

(
n∑

i=1

wi · LGDi · di
)

=
n∏

i=1

pi(Yi)
di [1− pi(Yi)]

1−di , di ∈ {0, 1} (A.1)
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and the corresponding moment generating function, defined as MPL|Y(θ) = E
[
eθ·PL|Y], is:

MPL|Y(θ) =

n∏
i=1

(
1− pi(Yi) + ewi·LGDi·θpi(Yi)

)
, θ ∈ R. (A.2)

In the equations above, pi(Yi) denotes the conditional default probability for an institution i given

by:

pi(Yi) = Φ

(
Φ−1(pi) + aiYi√

1− ai

)
. (A.3)

In general, an exponentially tilted sampling distribution f∗(x; θ) can be derived from the original

density f(x) and its moment generating function M(θ) as follows:

f∗(x; θ) =
eθxf(x)

M(θ)
(A.4)

which in our case implies an exponentially tilted sampling probability function f∗
PL|Y(·; θ) given by:

f∗
PL|Y

(
n∑

i=1

wi · LGDi · di; θ
)

= eθ·
∑n

i=1 wi·LGDi·di
n∏

i=1

pi(Yi)
di [1− pi(Yi)]

1−di

1− pi(Yi) + ewi·LGDi·θpi(Yi)
. (A.5)

The likelihood ratio takes a simple form:

l

(
n∑

i=1

wi · LGDi ·Di

)
=

fPL|Y (
∑n

i=1wi · LGDi ·Di)

f∗
PL|Y (

∑n
i=1wi · LGDi ·Di; θ)

= e−θ·∑n
i=1 wi·LGDi·Di

n∏
i=1

[
1− pi(Yi) + ewi·LGDi·θpi(Yi)

]
≡ exp

(−θPL+ CPL|Y(θ)
)
, (A.6)

where CPL|Y(θ) denotes the conditional cumulant generating function of PL, defined as

CPL|Y(θ) = ln
(
MPL|Y(θ)

)
.

Taking the first derivative of the conditional cumulant generating function with respect to θ

∂

∂θ
CPL|Y(θ) =

∑n

i=1
wi · LGDi · eθ·wi·LGDipi(Yi)

1− pi(Yi) + ewi·LGDi·θpi(Yi)

≡
∑n

i=1
wi · LGDi · pi(Yi; θ), (A.7)

where pi(Yi; θ) denotes the “exponentially tilted” version of the conditional default probability (A.3),

provides us with an expression for the mean of the conditional loss distribution. To make the

conditional expected loss equal the threshold xq we set θ ≡ θxq(y) according to:

θxq(y) :=
{
θ :
∑n

i=1
wi · LGDi · pi(yi; θ) = xq

}
. (A.8)
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The theorem 1 in Sadowsky and Bucklew (1989, 508) states that θxq(y) always exists and is unique.

If xq > E[PL | y], then θxq(y) is positive and the tilted default probabilities pi(yi; θxq(y)) are

greater than the original ones, leading to larger portfolio losses. Otherwise, θxq(y) is negative and

should be set to zero in order to estimate the tail risk, because there is no advantage in reducing

pi(yi). So the appropriate choice of the tilting parameter in our setting is:

θ+xq
(y) = max{0, θxq(y)}. (A.9)

A.2. Shifting the mean of the systematic factors

The original distribution of the systematic factors Y is multivariate standard-Gaussian with a cor-

relation matrix Σ and its off-diagonal elements Σij = ρYi,Yj . For the purpose of IS, we accomplish

the change of the probability measure simply by shifting the mean of Y from 0 to μμμ, leaving the

correlation matrix Σ unchanged. The sample distribution is then multivariate Gaussian N(μμμ,Σ).

Under the new probability measure, equation (4.1) becomes:

Pr {PL > xq} = Ẽ
[
11(xq ,1](PL) l(Y)

]
, (A.10)

where the expectation is defined with respect to the new sample distribution. The likelihood ratio

l(·) is given by the ratio of the original to the new sample density:

l(Y) =
exp
(−1

2Y
′Σ−1Y

)
exp
(−1

2(Y −μμμ)′Σ−1(Y −μμμ)
) = exp

(
1

2
μμμ′Σ−1μμμ−μμμ′Σ−1Y

)
. (A.11)

A proper choice of μμμ would lead to a significant variance reduction when estimating the expecta-

tion (A.10) by a sample mean. As it is not feasible to find the optimal distribution (it would require

the knowledge of the quantity in question), a suboptimal choice has to be made. In a similar setting,

Glasserman and Li (2005) have developed an asymptotically optimal IS estimator choosing μμμ in a

way that the mode of the sampling density coincides with the mode of the following function:

y �→ Pr {PL > xq | Y = y} exp
(
−1

2
y′Σ−1y

)
. (A.12)

In the equation above, the issue of calculating a small probability is represented by the problem of

integrating the conditional tail of PL over the distribution of the systematic factors. The unique

value of y, where the function (A.12) reaches its maximum, would serve as a good choice for μμμ.

Unfortunately, it is not quite feasible to find the preferable solution, meaning we have to deal with

a further approximation. Glasserman and Li (2005) suggest substituting the actual conditional tail

probability in (A.12) with its upper bound according given on the right-hand side of next expression:

Pr {PL > xq | Y = y} � exp
[
−θ+xq

(y)xq + CPL|Y
(
θ+xq

(y)
)]

. (A.13)

This eventually leaves us with the option of choosing the mean according to the solution of the
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following maximisation problem:

μμμxq = argmax
y

{
−θ+xq

(y)xq + CPL|Y
(
θ+xq

(y)
)− 1

2
y′Σ−1y

}
. (A.14)

B. The simulation algorithm

Now we outline the estimation procedure for the portfolio loss distribution function using the IS

technique described in the previous appendix.

First and foremost, it is important to accentuate the fact that there is no need for a repetitive

computation of shifting and tilting parameters for numerous different loss levels. Although the

parameters μxq and θ+xq
(y) depend on a particular loss quantile, it is sufficient for a practical im-

plementation to choose only one value of xq. This loss level should be located in the tail, close to

V aRq(PL) and can be chosen on the basis of a short preliminary MC simulation run or the approxi-

mative analytical solution we will present later in the paper. The exact position of the loss threshold

is not critical. For the chosen value of xq the problem (A.14) needs to be solved numerically only

once before starting the first simulation run. θ+xq
(y) has to be determined once for each realisation

y.

Furthermore, note that the total likelihood ratio for the two-stage IS algorithm is simply the

product of the likelihood ratios (A.6) and (A.11).

Taking this information into account, we suggest the following IS simulation algorithm:

• Choose an appropriate loss level xq.

• Find μμμxq by solving (A.14).

• For each replication k = 1, . . . , s:

– generate a realisation y from N(μμμxq ,Σ);

– calculate pi(yi) as in (A.3) for i = 1, . . . , n;

– find θ+xq
(y) as in (A.9) by solving (A.8);

– according to (3.3) generate Bernoulli default indicators either by simulating Di(yi) ∼
Be
(
pi(yi)
)
for i = 1, . . . , n directly or by means of Xi in (3.1);

– calculate portfolio loss PLk in the kth simulation run as in (3.4);

– calculate the likelihood ratio

l
(
PLk
)
= exp

[
−θ+xq

(y)PLk + CPL|Y
(
θ+xq

(y)
)
+

1

2
μμμ′
xq
Σ−1μμμxq −μμμ′

xq
Σ−1y

]
. (B.1)

• Calculate the empirical cumulative distribution function for the portfolio loss according to

F̂PL(x) = 1− 1

s

∑s

k=1
11(x,1]
(
PLk
)
l
(
PLk
)
, x ∈ [0, 1]. (B.2)
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C. The model of Pykhtin

The “effective” systematic factor Ȳ introduced in (5.1) is the same for all institutions in the portfolio.

Therefore, the model (3.1) can be rewritten in the following way

Xi = biȲ +
√
1− b2i εi (C.1)

where {εi}i=1,...,n are independent standard normal variables, bi ≡ ai
∑m

k=1 αikβk are the new factor

loadings, and
∑m

k=1 αikβk represents the correlation between Yi and Ȳ .

The optimal choice of the coefficients {βk} is not obvious. Pykhtin suggested maximising the

correlation between Yi and Ȳ :

max
{βk}

{
n∑

i=1

ci

m∑
k=1

αikβk

}
w.r.t.

m∑
k=1

β2
k = 1, (C.2)

ci = wi · LGDi · Φ
⎛⎝Φ−1(pi) + aiΦ

−1(q)√
1− a2i

⎞⎠ . (C.3)

Thereby, differentiating the Lagrange function

L
({βk} , λ) = n∑

i=1

ci

m∑
k=1

αikβk − λ

(
m∑
k=1

β2
k − 1

)

and putting the partial derivatives to zero yields

βk =
1

2λ

n∑
i=1

ciαik, k = 1, . . . ,m,

λ =
1

2

√√√√ m∑
k=1

(
n∑

i=1

ciαik

)2

=
1

2

√√√√ n∑
i=1

n∑
j=1

cicjρYi,Yj .

In doing so, we can eliminate {αik} from the equation:

bi =
ai
2λ

m∑
k=1

αik

n∑
j=1

cjαjk =
ai
2λ

n∑
j=1

cjρYi,Yj . (C.4)

The factor loadings {bi} are all we need to know about the model representation (C.1) in order

to carry on with the calculation of VaR and ES.

Representation (C.1) has just the form of a one-factor model. In the case of the limiting portfolio,

provided that
∑n

i=1w
2
i → 0 while n → ∞, the portfolio loss rate in a one-factor model is a function

of the systematic risk factor

PL∞(Ȳ ) = E[PL | Ȳ ] = E

[
n∑

i=1

wi · LGDi ·Di | Ȳ
]
=

n∑
i=1

wi · LGDi · pi(Ȳ ), (C.5)
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and the corresponding asymptotic solution for the portfolio VaR is well known from Gordy (2003):

V aRȲ
q (PL∞) = PL∞(yq) =

n∑
i=1

wi · LGDi · pi(yq), (C.6)

where pi(yq) is the conditional probability of distress given in (5.3).

The expression above describes the conditional mean of the portfolio loss distribution depending

on a “bad” realisation of Ȳ . The second order Taylor approximation of V aRq(PL)6 require an

additional correction for the conditional variance. Therefore, we augment expression (C.6) with an

adjustment term, which corrects for the portfolio granularity in the multi-factor setting and can be

written as:

ΔV aRq(PL) = (C.7)

− 1

2
(
PL∞(yq)

)′
[(

var(PL | Ȳ = yq)
)′ − var(PL | Ȳ = yq)

((
PL∞(yq)

)′′(
PL∞(yq)

)′ + yq

)]
.

The derivatives of the limiting portfolio used in (C.7) can be found in appendix D, expressions (D.1)

to (D.4).

So far there has been nothing special concerning the representation of the one-factor model (C.1)

in terms of a convex combination of {Zk}, as given by (5.1). However, in order to obtain a formula

for var(PL | Ȳ = yq) we need to take into account that asset returns are actually not independent

given a realisation of the effective risk factor Ȳ . It can be seen from the following representation:

Xi = biȲ +

m∑
k=1

(aiαi,k − biβk)Zk +
√

1− a2i εi.

In fact, the conditional asset correlation between two distinct institutions i and j is given by

ρȲi,j =
ρi,j − bibj√

1− b2i

√
1− b2j

. (C.8)

Although meaningless as a correlation coefficient, expression (C.8) has to be extended to cover the

case j = i, i.e. ρȲi,i = (r2i − b2i )/(1− b2i ).

Asset returns are only independent conditional on the whole set of systematic factors {Zk}. Thus,
according to the law of total variance, we may decompose var(PL | Ȳ = yq) to separate the variance

of the limiting portfolio loss var∞(·) from the effect of granularity varGA(·):

var(PL | Ȳ = yq) = var∞(PL | Ȳ = yq) + varGA(PL | Ȳ = yq)

= var
(
E[PL | {Zk}] | Ȳ = yq

)
+ E
[
var(PL | {Zk}) | Ȳ = yq

]
. (C.9)

Thereby, E[PL | {Zk}] corresponds to the limiting portfolio loss in the multi-factor setting (see (3.1)

6See proposition 2.2 in Emmer and Tasche (2003).
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and (3.2)) given by:

PL∞({Zk}) = E[PL | {Zk}] =
n∑

i=1

wi · LGDi · pi({Zk})

=

n∑
i=1

wi · LGDi · Φ
⎛⎝Φ−1(pi)− ai

∑m
k=1 αikZk√

1− a2i

⎞⎠ .

Taking into account the conditional correlation parameter specified in equation (C.8), the multi-

factor adjustment terms for the limiting case and for the effect of granularity can be given by

var∞(PL | Ȳ = yq) = var
(
E[PL | {Zk}] | Ȳ = yq

)
=

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj · cov
(
pi({Zk}), pj({Zk}) | Ȳ = yq

)
=

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj

[
CGauss

(
pi(yq), pj(yq); ρ

Ȳ
i,j

)
− pi(yq)pj(yq)

]
, (C.10)

varGA(PL | Ȳ = yq) = E
[
var(PL | {Zk}) | Ȳ = yq

]
=

n∑
i=1

w2
i · LGD2

i · E
[(

pi({Zk})− pi({Zk})pi({Zk})
)
| Ȳ = yq

]
=

n∑
i=1

w2
i · LGD2

i

[
pi(yq)− CGauss

(
pi(yq), pi(yQ); ρ

Ȳ
i,i

)]
, (C.11)

respectively. In the equations above, CGauss(·, ·; ρ) denotes the bivariate Gauss copula with the cor-

relation parameter ρ. It assigns the conditional probability of a simultaneous distress of institutions

i and j (extended to include the case j = i).

Due to the variance decomposition (C.9), the multi-factor adjustment for the portfolio VaR in

equation (C.7) can also be represented as a sum of two terms: one correcting the VaR of the limiting

portfolio for the systematic effect in the multi-factor setting (ΔV aR∞
q (PL)), and another, addressing

the granularity (ΔV aRGA
q (PL)). Then, the approximation formula turns out to be:

V aRq(PL) ≈ V aRapprox
q (PL) = V aRȲ

q (PL∞) + ΔV aR∞
q (PL) + ΔV aRGA

q (PL). (C.12)

As to the expected shortfall, Pykhtin derived an analytical approximation of the ES using the

integral representation (3.6) by setting:

ESq(PL) ≈ 1

1− q

∫ 1

q

(
V aRȲ

t (PL∞) + ΔV aRt(PL)
)
d t

= ESȲ
q (PL∞) + ΔESq(PL). (C.13)

The first term in equation (C.13) represents ES in the case of the limiting portfolio within the
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one-factor framework:

ESȲ
q (PL∞) =

1

1− q

n∑
i=1

wi · LGDi · CGauss
(
pi, 1− q; bi

)
. (C.14)

The second term is the multi-factor adjustment defined as a linear function of the conditional

variance:

ΔESq(PL) = − φ(yq)

2(1− q)

var(PL | Ȳ = yq)(
PL∞(yq)

)′ . (C.15)

Due to the additivity of the variance components (see equations (C.9), (C.10) and (C.11)), ΔESq(PL)

can also be represented as a sum of its systematic and idiosyncratic parts. Therefore, the analytical

approximation of the ES can finally be written as:

ESq(PL) ≈ ESapprox
q (PL) = ESȲ

q (PL∞) + ΔES∞
q (PL) + ΔESGA

q (PL). (C.16)

In the case of large portfolios the systematic parts of VaR and ES, i.e. V aRȲ
q (PL∞)+ΔV aR∞

q (PL)

and ESȲ
q (PL∞) + ΔES∞

q (PL), provide a reasonable approximation of the portfolio risk while the

idiosyncratic parts, i.e. ΔV aRGA
q (PL) and ΔESGA

q (PL), vanish. However, due to the fact that

the portfolio under consideration could be relatively small and perhaps dominated by a few large

exposures, the granularity adjustment terms could be nearly as large as the systematic part.

D. Derivatives used in the analytical approximation of tail risk and risk

contributions

The first and second derivatives of the limiting portfolio loss with respect to y, initially used in

expression (C.7), are as follows:

(
PL∞(y)

)′
=

n∑
i=1

wi · LGDi ·
(
pi(y)
)′
, (D.1)

(
PL∞(y)

)′′
=

n∑
i=1

wi · LGDi ·
(
pi(y)
)′′
, (D.2)

and the corresponding derivatives of the conditional probability of distress are:

p′i(y) = − bi√
1− b2i

φ

⎛⎝Φ−1(pi)− biy√
1− b2i

⎞⎠ , (D.3)

p′′i (y) = − b2i
1− b2i

Φ−1(pi)− biy√
1− b2i

φ

⎛⎝Φ−1(pi)− biy√
1− b2i

⎞⎠ . (D.4)

According to the variance representation as a sum of the limiting portfolio loss variance (C.10)

and the granularity adjustment term (C.11), the first derivative of the conditional portfolio variance
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var(PL | Ȳ = yq) can also be separated into two parts as follows:

(
var∞(PL | Ȳ = y)

)′
= 2

n∑
i=1

n∑
j=1

wi · wj · LGDi · LGDj · p′i(y) [Qji(y)− pj(y)] (D.5)

and (
varGA(PL | Ȳ = y)

)′
=

n∑
i=1

w2
i · LGD2

i · p′i(y) [1− 2Qii(y)] (D.6)

with

Qji(y) = Φ

⎛⎝Φ−1
(
pj(y)
)− ρȲi,jΦ

−1
(
pi(y)
)√

1− (ρȲi,j)2
⎞⎠ . (D.7)

Then, the derivatives with respect to an individual exposure weight wi, initially used to derive

the multi-factor granularity adjustment for the VaR contributions in (5.4), can be obtained for both

variance components:

∂

∂wi

(
var∞(PL | Ȳ = y)

)
(D.8)

= 2 · LGDi

n∑
j=1

wj · LGDj

[
CGauss

(
pi(y), pj(y); ρ

Ȳ
i,j

)
− pi(y)pj(y)

]
,

∂

∂wi

(
varGA(PL | Ȳ = y)

)
(D.9)

= 2wi · LGD2
i

[
pi(y)− CGauss

(
pi(y), pj(y); ρ

Ȳ
ij

)]
.

The corresponding derivatives of (D.5) and (D.6) are:

∂

∂wi

(
var∞(PL | Ȳ = y)

)′
(D.10)

= 2 · LGDi

n∑
j=1

wj · LGDj · pj ′(y)
[
Qij(y)− pi(y)

]
+ 2 · LGDi · p′i(y)

n∑
j=1

wj · LGDj

[
Qji(y)− pj(y)

]
,

∂

∂wi

(
varGA(PL | Ȳ = y)

)′
= 2wi · LGD2

i · p′i(y)
(
1− 2Qii(y)

)
. (D.11)

Eventually, the last two expressions also used in the analytical approximation of the risk contribu-
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tions are the following

∂

∂wi

(
PL∞(y)

)′
= LGDi · p′i(y), (D.12)

∂

∂wi

((
PL∞(y)

)′′(
PL∞(y)

)′
)

(D.13)

=
LGDi · p′′i (y)

∑n
j=1wj · LGDj · p′j(y)− LGDi · p′i(y)

∑n
j=1wj · LGDj · p′′j (y)∑n

j=1wj · LGDj · p′j(y)
.
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