The Role of Industrial Composition in Driving the Frequency of Price Change

Christopher Cotton & Vaishali Garga Federal Reserve Bank of Boston

Bundesbank Spring Conference 2024 7–8 May 2024

Motivation

- Frequency of price change: crucial parameter in monetary economics
 - Extent of transmission of nominal shocks to the real economy
 - Key determinant of the slope of the Phillips curve

Motivation

- Frequency of price change: crucial parameter in monetary economics
 - Extent of transmission of nominal shocks to the real economy
 - Key determinant of the slope of the Phillips curve
- Long-term decline in the slope of the Phillips curve in the United States (US)

Motivation

- Frequency of price change: crucial parameter in monetary economics
 - Extent of transmission of nominal shocks to the real economy
 - Key determinant of the slope of the Phillips curve
- Long-term decline in the slope of the Phillips curve in the United States (US)
- One potential reason for the slope decline: fall in the frequency of price change

Frequency of Price Change

- Can fall for two reasons:
 - Fall in the frequency of price change of individual products
 - Shift in the distribution towards products with a lower frequency of price change

Frequency of Price Change

- Can fall for two reasons:
 - Fall in the frequency of price change of individual products
 - Shift in the distribution towards products with a lower frequency of price change
- Shift in the product distribution due to industrial composition shifts

Why Industrial Composition?

- Natural candidate to explain the long-term decline
- Infeasible to directly use BLS product weights:
 - Limited data availability of product weights from the BLS
 - Reclassification of products in the BLS

• Impact of changes in industrial composition on the distribution of frequency of price change

• Impact of changes in industrial composition on the distribution of frequency of price change

Consequent impact on the slope of the Phillips curve

- Impact of changes in industrial composition on the distribution of frequency of price change
 - Empirical analysis
- Consequent impact on the slope of the Phillips curve

- Impact of changes in industrial composition on the distribution of frequency of price change
 - Empirical analysis
- Consequent impact on the slope of the Phillips curve
 - Quantitative model

- Impact of changes in industrial composition on the distribution of frequency of price change
 - Empirical analysis
- Consequent impact on the slope of the Phillips curve
 - Quantitative model

- Focus: US, 1947–2019
- Methodology general and more broadly applicable
 - Other countries/time periods/price-change statistics

Heterogeneity in frequency of price change across products in monetary models

Nakamura and Steinsson (2008, 2010), Carvalho (2006), Nakamura et al. (2018), Montag and Villar (2022)

This paper: distribution of frequency of price change over time and its implications

Heterogeneity in frequency of price change across products in monetary models

Nakamura and Steinsson (2008, 2010), Carvalho (2006), Nakamura et al. (2018), Montag and Villar (2022)

This paper: distribution of frequency of price change over time and its implications

Heterogeneity in frequency of price change across products in monetary models

Nakamura and Steinsson (2008, 2010), Carvalho (2006), Nakamura et al. (2018), Montag and Villar (2022)

This paper: distribution of frequency of price change over time and its implications

Measuring the slope of the Phillips curve

Blanchard, Cerutti, and Summers (2015), Blanchard (2016), Hazell et. al. (2020)

This paper: complementary results with focus on the role of industrial composition changes

Heterogeneity in frequency of price change across products in monetary models

Nakamura and Steinsson (2008, 2010), Carvalho (2006), Nakamura et al. (2018), Montag and Villar (2022)

This paper: distribution of frequency of price change over time and its implications

Measuring the slope of the Phillips curve

Blanchard, Cerutti, and Summers (2015), Blanchard (2016), Hazell et. al. (2020)

This paper: complementary results with focus on the role of industrial composition changes

Heterogeneity in frequency of price change across products in monetary models

Nakamura and Steinsson (2008, 2010), Carvalho (2006), Nakamura et al. (2018), Montag and Villar (2022)

This paper: distribution of frequency of price change over time and its implications

Measuring the slope of the Phillips curve

Blanchard, Cerutti, and Summers (2015), Blanchard (2016), Hazell et. al. (2020)

This paper: complementary results with focus on the role of industrial composition changes

Reasons for the decline in the slope of the Phillips curve

Del Negro et al. (2020), Mangiante (2022), Crump et al. (2019), Daly and Hobijn (2014), Moscarini and Postel-Vinay (2018), Daly and Hobijn (2014), Bernanke et al. (2010), Jørgensen and Lansing (2019), Borio and Filardo (2007), Iakova (2007), Rubbo (2020), Mangiante (2022), Kaihatsu, Katagiri, and Shiraki (2022)

This paper: explanation for a long-term decline in the slope from late 1940s-present

ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?

- ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?
- Aggregate frequency of price change
 - = a moment of the distribution of frequency of price change across products

- ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?
- Aggregate frequency of price change
 - = a moment of the distribution of frequency of price change across products

- ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?
- Aggregate frequency of price change
 - = a moment of the distribution of frequency of price change across products
- ullet Distribution of frequency of P Δ = F (Frequency of P Δ of product, Share of product in economy)

- ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?
- Aggregate frequency of price change by year
 - = a moment of the distribution of frequency of price change across productst
- ullet Distribution of frequency of P Δ = F (Frequency of P Δ of product, Share of product in economy)

- ullet Goal: Δ Industrial composition $\Longrightarrow \Delta$ Aggregate frequency of price change?
- Aggregate frequency of price change by year
 - = a moment of the distribution of frequency of price change across products
- Distribution of frequency of $P\Delta_t = F$ (Frequency of $P\Delta$ of product_i, Share of product in economy_{it})

Distribution of frequency of $P\Delta_t = F$ (Frequency of $P\Delta$ of product_i, Share of product in economy_{it})

Distribution of frequency of $P\Delta_t = F\left(Frequency \text{ of } P\Delta \text{ of } product_i, Share of product in economy_{it}\right)$

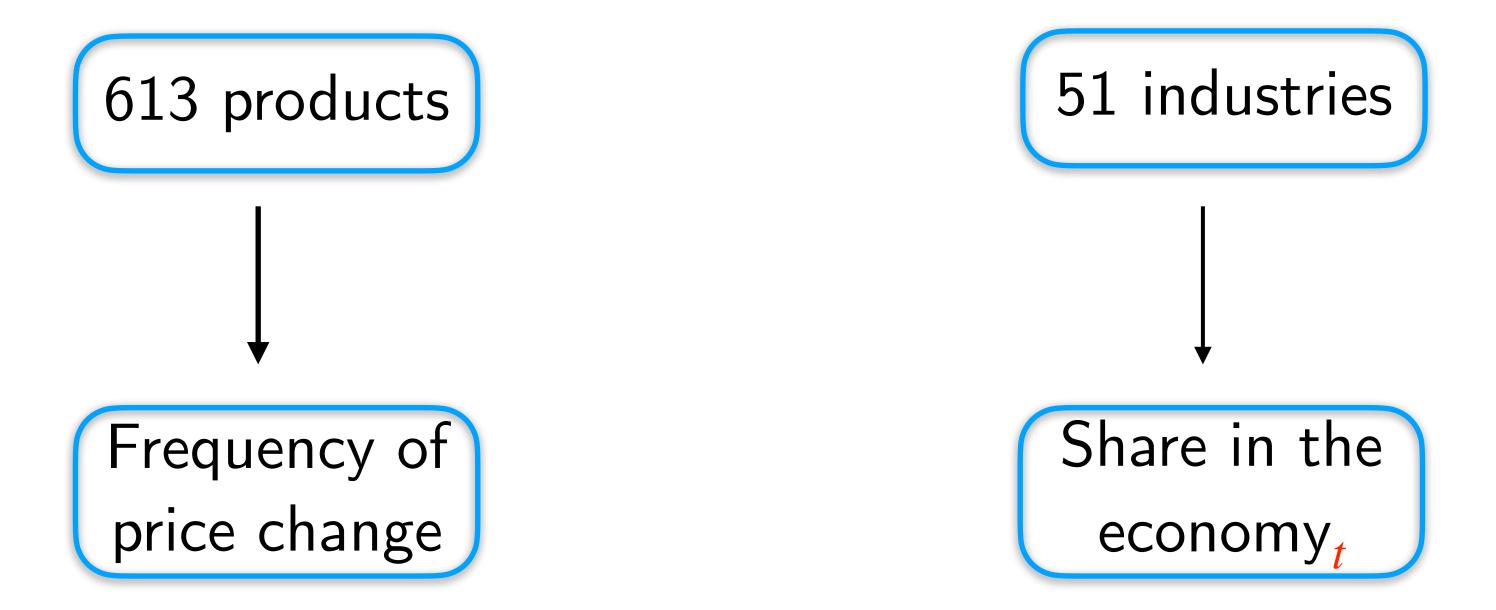
- ▶ Nakamura and Steinsson (2008)
 - ▶ BLS microdata on prices
- ▶ Available for 272 CPI + 348 PPI products
- ▶ Static measure: 1998–2005 average

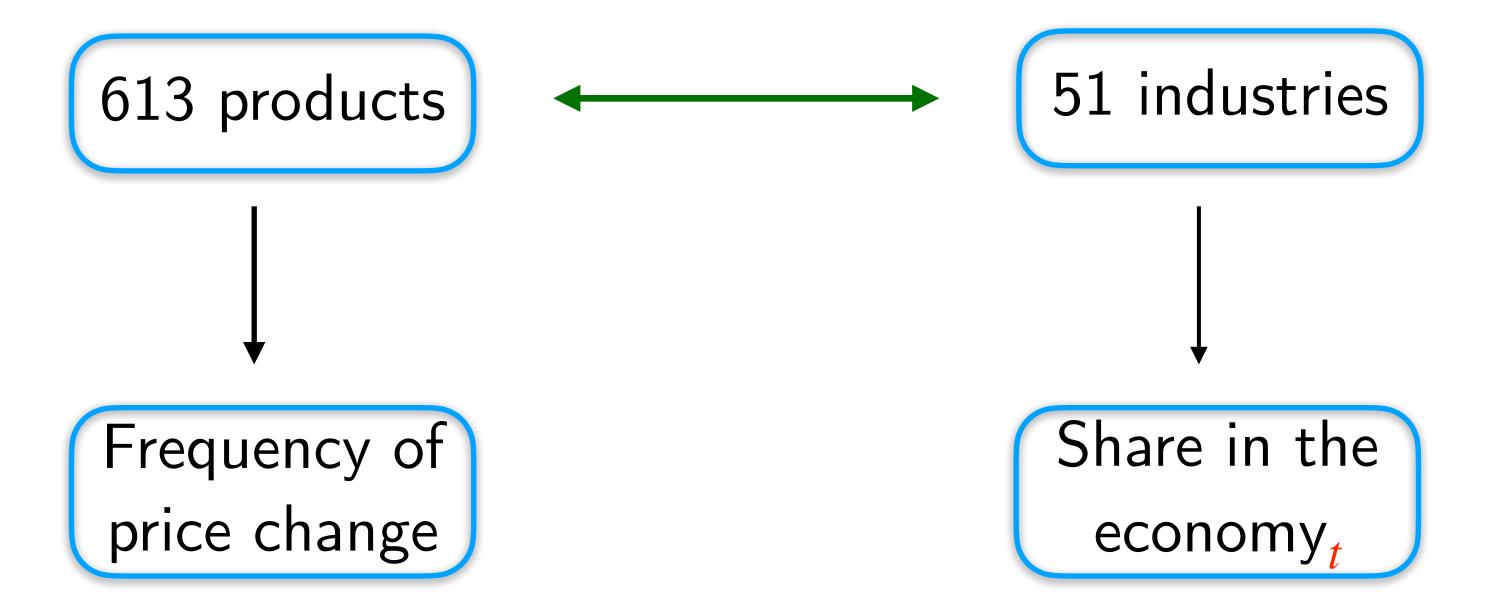
Distribution of frequency of $P\Delta_t = F$ (Frequency of $P\Delta$ of product_i, Share of product in economy_{it})

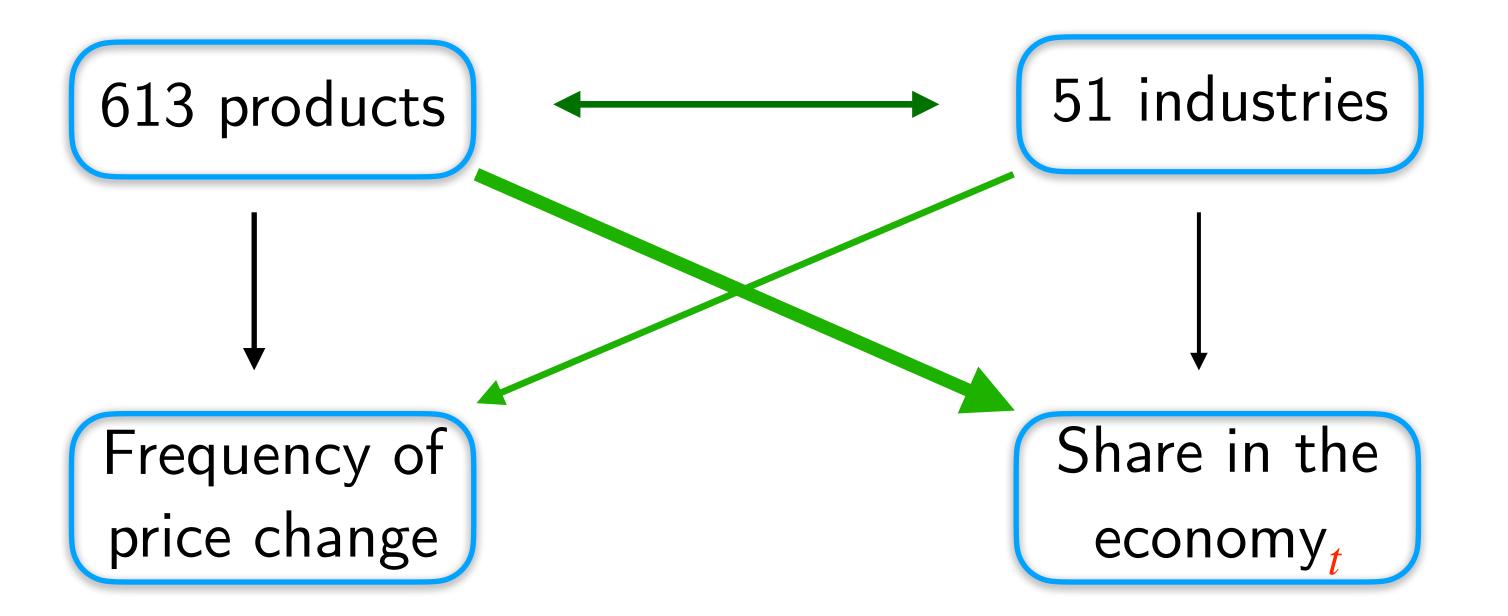
- ▶ Nakamura and Steinsson (2008)
 - ▶ BLS microdata on prices
- ▶ Available for 272 CPI + 348 PPI products
- ▶ Static measure: 1998–2005 average

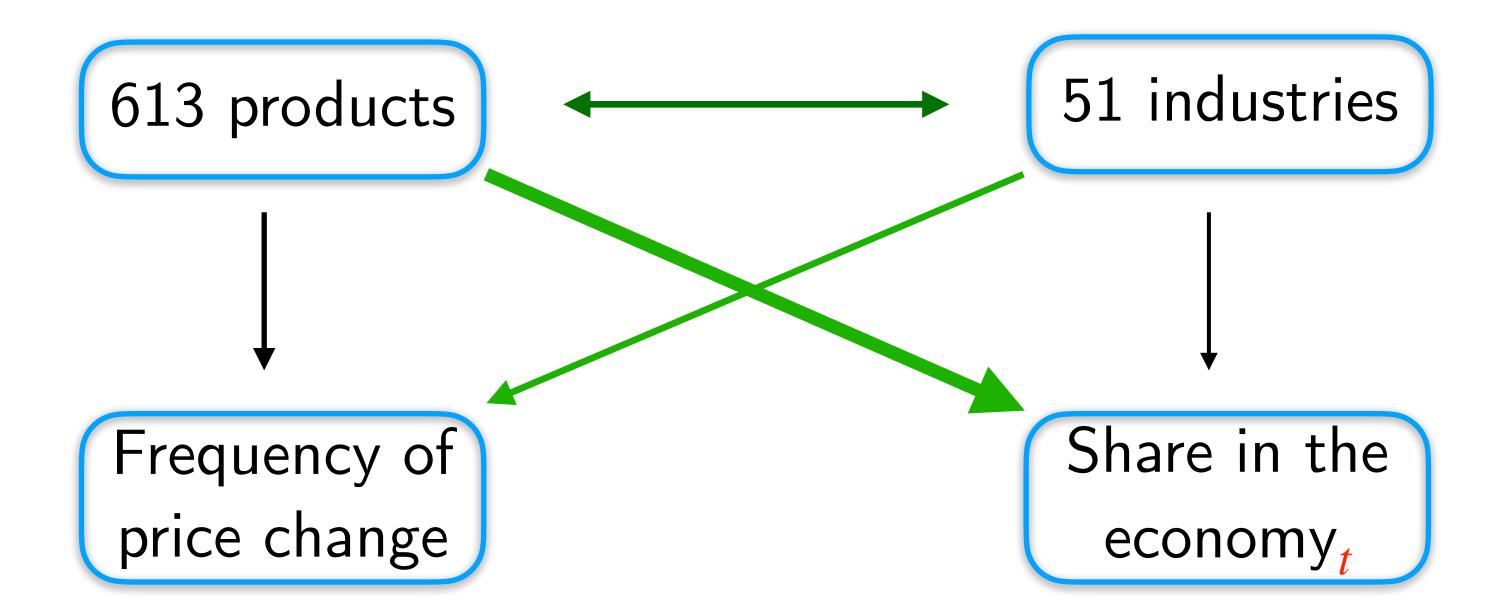
Own algorithm based on:

- Product-Industry mapping
- Expenditure weights
- ▶ Share of industry in the economy

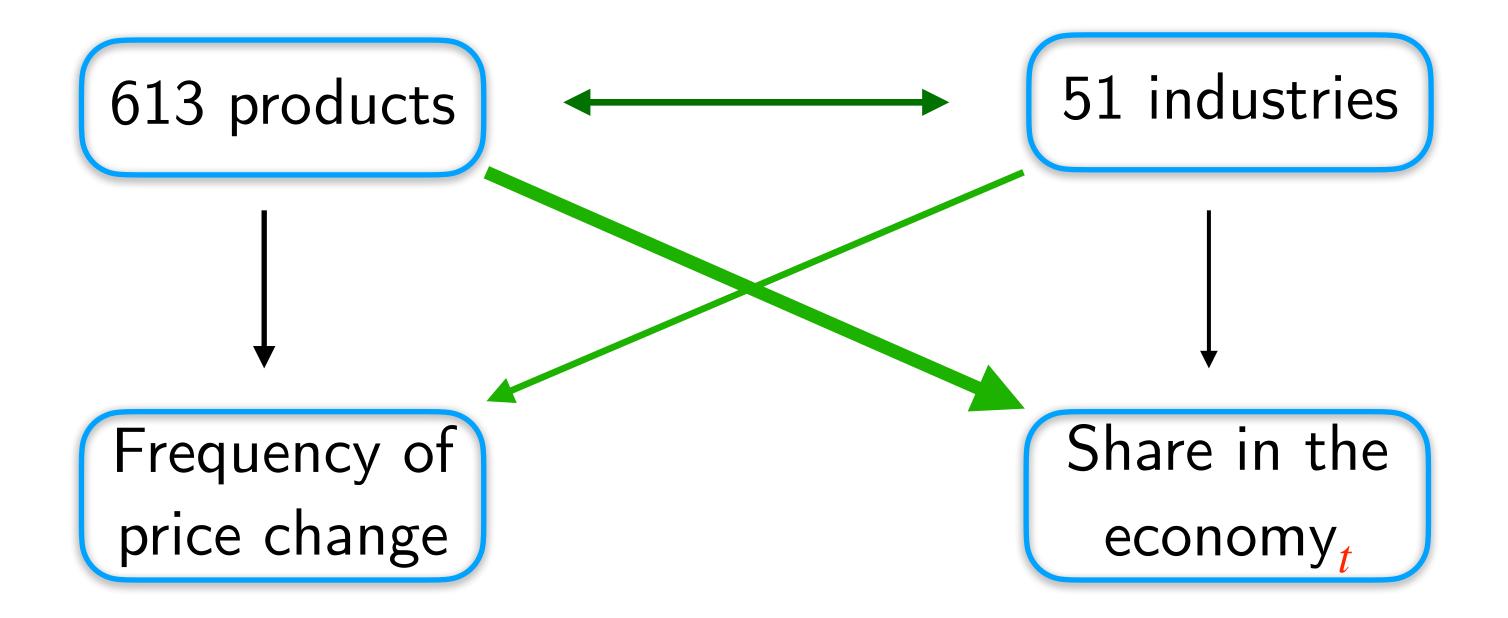

Distribution of frequency of $P\Delta_t = F$ (Frequency of $P\Delta$ of product_i, Share of product in economy_{it})

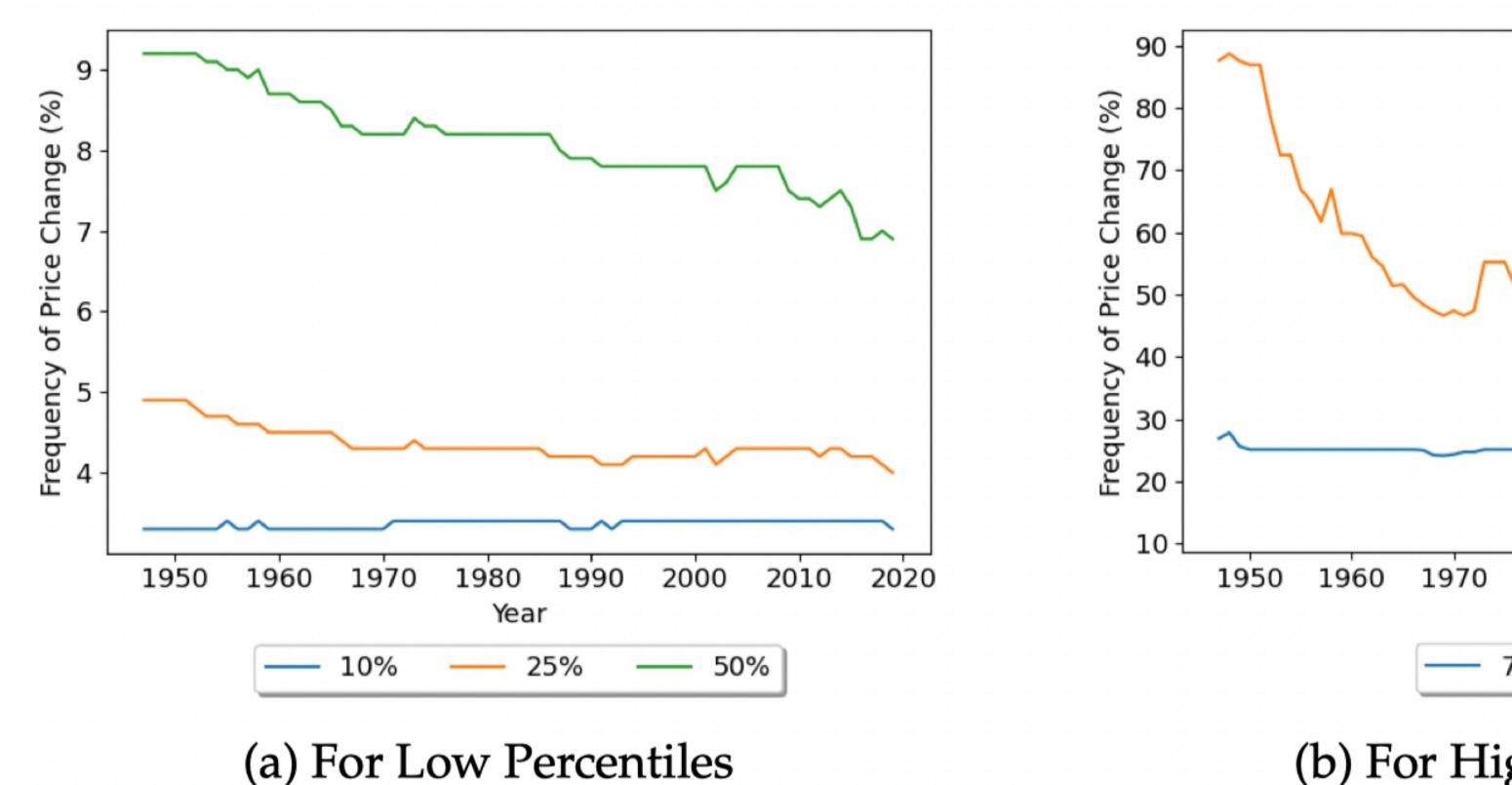

- ▶ Nakamura and Steinsson (2008)
 - ▶ BLS microdata on prices
- ▶ Available for 272 CPI + 348 PPI products
- ▶ Static measure: 1998–2005 average

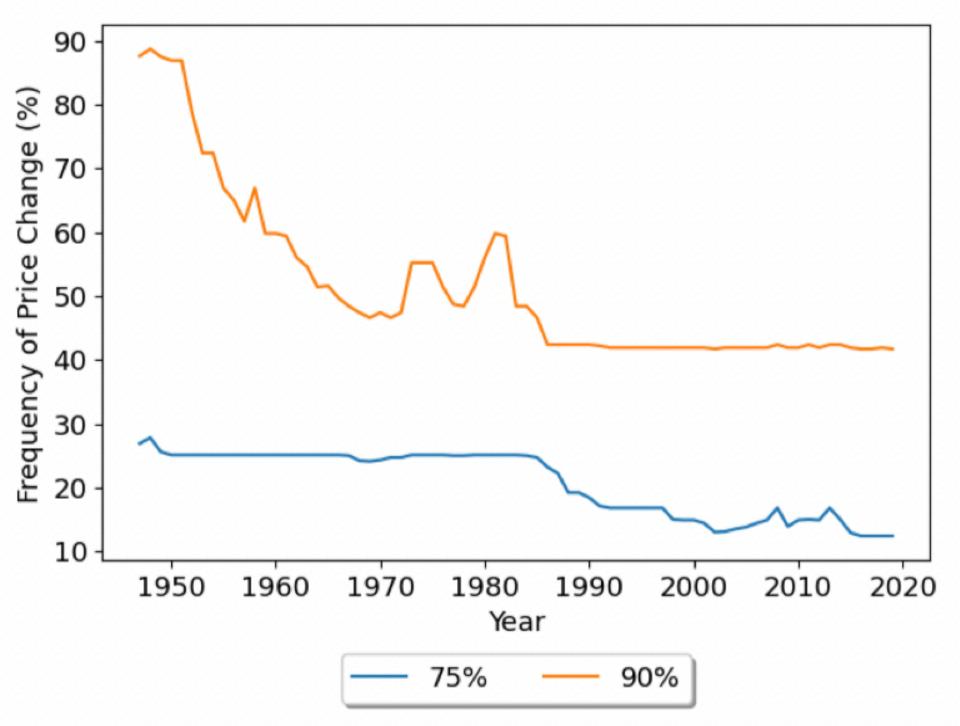

Own algorithm based on:


- Product-Industry mapping
- Expenditure weights
- Share of industry in the economy

- ▶ BEA and World KLEMS Initiative
- ▶ Available for 65 industries
- Dynamic: 1947–2019 annual data




- \bullet Once we have computed the share of the product in the economy_{it}
 - It can be used to compute the distribution for any statistic available at the level of the product



- \bullet Once we have computed the share of the product in the economy_{it}
 - It can be used to compute the distribution for any statistic available at the level of the product

Distribution of any statistic of product_t = $F\left(Statistic \text{ of product}_{i}, Share \text{ of product in economy}_{it}\right)$

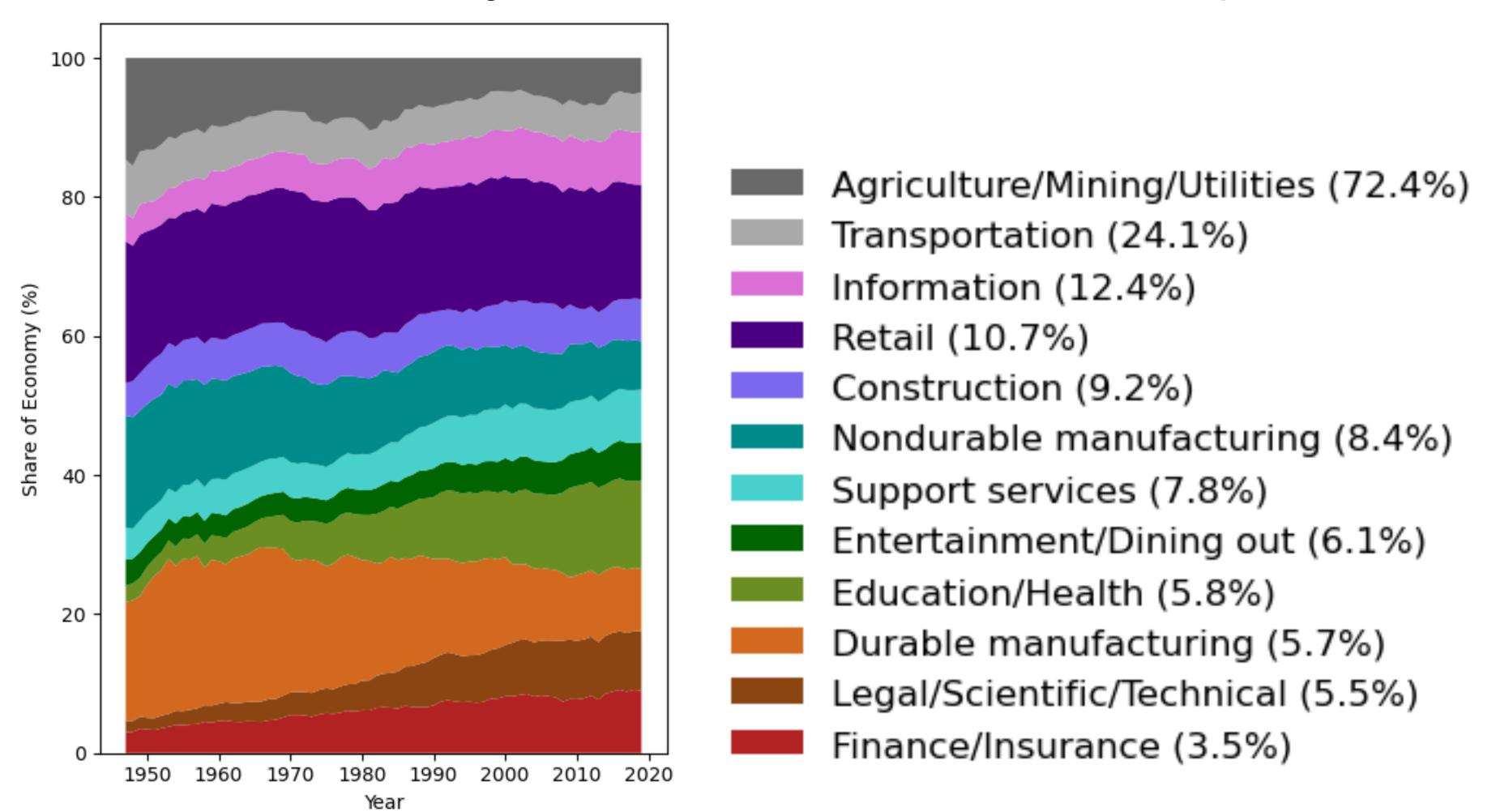
• Changes in industrial composition have led to large declines across the distribution of the frequency of price change over the 1947–2019 period

(b) For High Percentiles

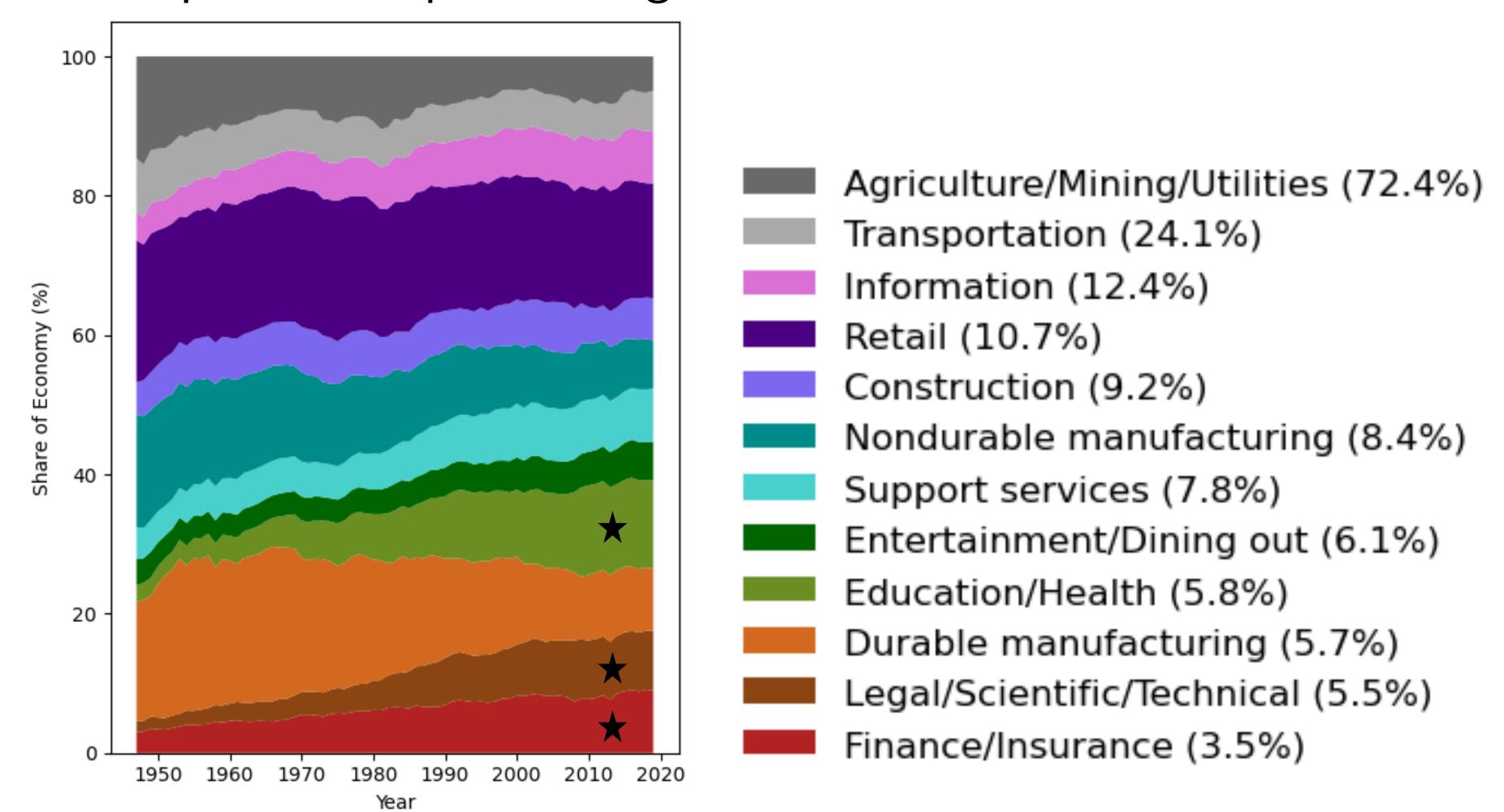
Compare NS

• Changes in industrial composition have led to large declines across the distribution of the frequency of price change over the 1947–2019 period

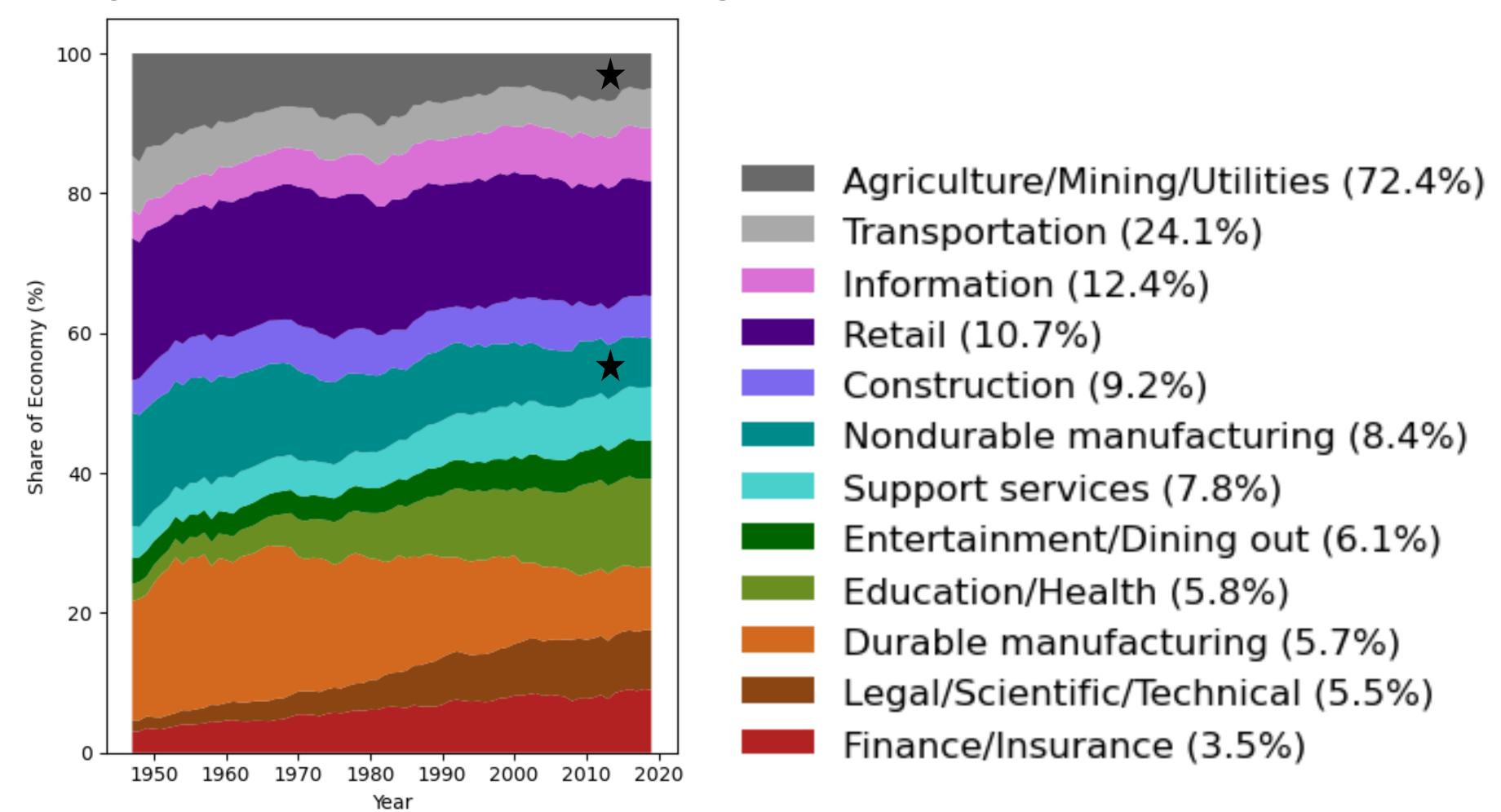
Year	10%	25%	50%	75%	90%
1947	3.3	4.9	9.2	26.9	87.6
1957	3.3	4.6	8.9	25.1	61.7
1967	3.3	4.3	8.3	25.0	48.4
1977	3.4	4.3	8.2	25.0	48.7
1987	3.4	4.2	8.0	22.2	42.4
1997	3.4	4.2	7.8	16.8	41.9
2007	3.4	4.3	7.8	14.9	41.9
2017	3.4	4.2	6.9	12.4	41.7
2019	3.3	4.0	6.9	12.4	41.7


 Median frequency of price change has fallen from 9.2% to 6.9% over the 1947–2019 period

Year	10%	25%	50%	75%	90%
1947	3.3	4.9	9.2	26.9	87.6
1957	3.3	4.6	8.9	25.1	61.7
1967	3.3	4.3	8.3	25.0	48.4
1977	3.4	4.3	8.2	25.0	48.7
1987	3.4	4.2	8.0	22.2	42.4
1997	3.4	4.2	7.8	16.8	41.9
2007	3.4	4.3	7.8	14.9	41.9
2017	3.4	4.2	6.9	12.4	41.7
2019	3.3	4.0	6.9	12.4	41.7


• Similar declines for other percentiles (except 10th) of the distribution of frequency of price change over the 1947–2019 period

Year	10%	25%	50%	75%	90%
1947	3.3	4.9	9.2	26.9	87.6
1957	3.3	4.6	8.9	25.1	61.7
1967	3.3	4.3	8.3	25.0	48.4
1977	3.4	4.3	8.2	25.0	48.7
1987	3.4	4.2	8.0	22.2	42.4
1997	3.4	4.2	7.8	16.8	41.9
2007	3.4	4.3	7.8	14.9	41.9
2017	3.4	4.2	6.9	12.4	41.7
2019	3.3	4.0	6.9	12.4	41.7


• These declines across the distribution were driven by a **shift from primary and secondary industries to tertiary industries** over the 1947–2019 period

- Finance/insurance, legal/scientific/technical, and education/health grew
 - All have low frequencies of price change

- Nondurable manufacturing and agriculture/mining/utilities shrunk
 - Both have high frequencies of price change

- All the five industries that grew the most:
 - Show substantially lower frequencies of price change than industries that shrunk
 - Are tertiary (service) industries

Industries with the top 5 largest increases in share of the economy

Industry Name	Freq.	1947	1983	2019
Miscellaneous professional scientific and technical ser-	8.2	1.1	3.5	6.7
vices				
Ambulatory health care services	3.4	1.0	3.0	5.3
Hospitals Nursing and residential care facilities	6.3	0.9	3.1	4.6
Administrative and support services	4.3	0.5	1.8	4.1
Federal Reserve banks credit intermediation and re-	3.5	1.7	3.9	4.8
lated activities				

- Three of the five industries that shrunk the most:
 - Have relatively higher frequencies of price change
 - Are primary or secondary (that extract raw materials and those that process them, respectively) industries

Industries with the top 5 largest decreases in share of the economy

Industry Name	Freq.	1947	1983	2019
Farms	94.8	10.0	1.7	0.9
Retail Trade	10.7	12.2	9.9	7.9
Food and beverage and tobacco products	22.2	5.8	3.1	1.8
Rail transportation	24.1	4.0	0.8	0.3
Primary metals	34.8	2.8	1.2	0.4

- Three of the five industries that shrunk the most:
 - Have relatively higher frequencies of price change
 - Are primary or secondary (that extract raw materials and those that process them, respectively) industries
- The remaining two industries are associated with the sale and transportation of their goods

Industries with the top 5 largest decreases in share of the economy

Industry Name	Freq.	1947	1983	2019
Farms	94.8	10.0	1.7	0.9
Retail Trade	10.7	12.2	9.9	7.9
Food and beverage and tobacco products	22.2	5.8	3.1	1.8
Rail transportation	24.1	4.0	0.8	0.3
Primary metals	34.8	2.8	1.2	0.4

• Goal: Implications of the decline in the distribution of frequency of price change for the slope of the Phillips curve

- Goal: Implications of the decline in the distribution of frequency of price change for the slope of the Phillips curve
- Multi-sector menu cost model
 - Sector (j): aggregated products (613 products \rightarrow 14 sectors)

- Goal: Implications of the decline in the distribution of frequency of price change for the slope of the Phillips curve
- Multi-sector menu cost model
 - Sector (j): aggregated products (613 products \rightarrow 14 sectors)
- Price change decision depends on
 - ullet Idiosyncratic productivity shocks o sector-specific distribution with std. dev. $\sigma_{\epsilon,j}$
 - Menu cost \rightarrow sector-specific χ_i

- Goal: Implications of the decline in the distribution of frequency of price change for the slope of the Phillips curve
- Multi-sector menu cost model
 - Sector (j): aggregated products (613 products \rightarrow 14 sectors)
- Price change decision depends on
 - ullet Idiosyncratic productivity shocks o sector-specific distribution with std. dev. $\sigma_{\epsilon,j}$
 - Menu cost \rightarrow sector-specific χ_j
- Model solved for a given distribution of sectors (share of sector in the economy $_{jt}$)

- Goal: Implications of the decline in the distribution of frequency of price change for the slope of the Phillips curve
- Multi-sector menu cost model
 - Sector (j): aggregated products (613 products \rightarrow 14 sectors)
- Price change decision depends on
 - ullet Idiosyncratic productivity shocks o sector-specific distribution with std. dev. $\sigma_{\epsilon,j}$
 - Menu cost \rightarrow sector-specific χ_j
- Model solved for a given distribution of sectors (share of sector in the economy $_{jt}$)
- Simulate Phillips curve in response to aggregate nominal demand shocks

Calibration

Sector #	Target Moments: Price change		Weight (%)
	Frequency (%)	Absolute Size (%)	(1983)
1	2.34	13.59	7.93
2	3.34	14.16	3.72
3	3.64	17.54	11.24
4	4.39	9.94	6.03
5	5.34	8.54	6.74
6	6.15	10.92	7.27
7	7.59	6.44	8.97
8	8.99	9.31	9.64
9	10.11	8.38	3.02
10	13.25	6.75	7.15
11	22.34	13.93	3.18
12	30.23	8.71	11.60
13	49.61	7.78	6.16
14	92.95	5.31	7.30

Calibration Sector-specific

menu cost

Sector #	Target Mome	nts: Price change	Estima	ted Parameters	Weight (%)
	Frequency (%)	Absolute Size (%)	χ_j	$\sigma_{\epsilon,j}$	(1983)
1	2.34	13.59	0.0057	0.0685	7.93
2	3.34	14.16	0.0074	0.0824	3.72
3	3.64	17.54	0.0043	0.0877	11.24
4	4.39	9.94	0.0013	0.0471	6.03
5	5.34	8.54	0.0008	0.0403	6.74
6	6.15	10.92	0.0011	0.0531	7.27
7	7.59	6.44	0.0004	0.0306	8.97
8	8.99	9.31	0.0005	0.0377	9.64
9	10.11	8.38	0.0005	0.0396	3.02
10	13.25	6.75	0.0001	0.0242	7.15
11	22.34	13.93	0.0000	0.0195	3.18
12	30.23	8.71	0.0004	0.0712	11.60
13	49.61	7.78	0.0002	0.0857	6.16
14	92.95	5.31	0.0000	0.0513	7.30

Calibration Sector-specific

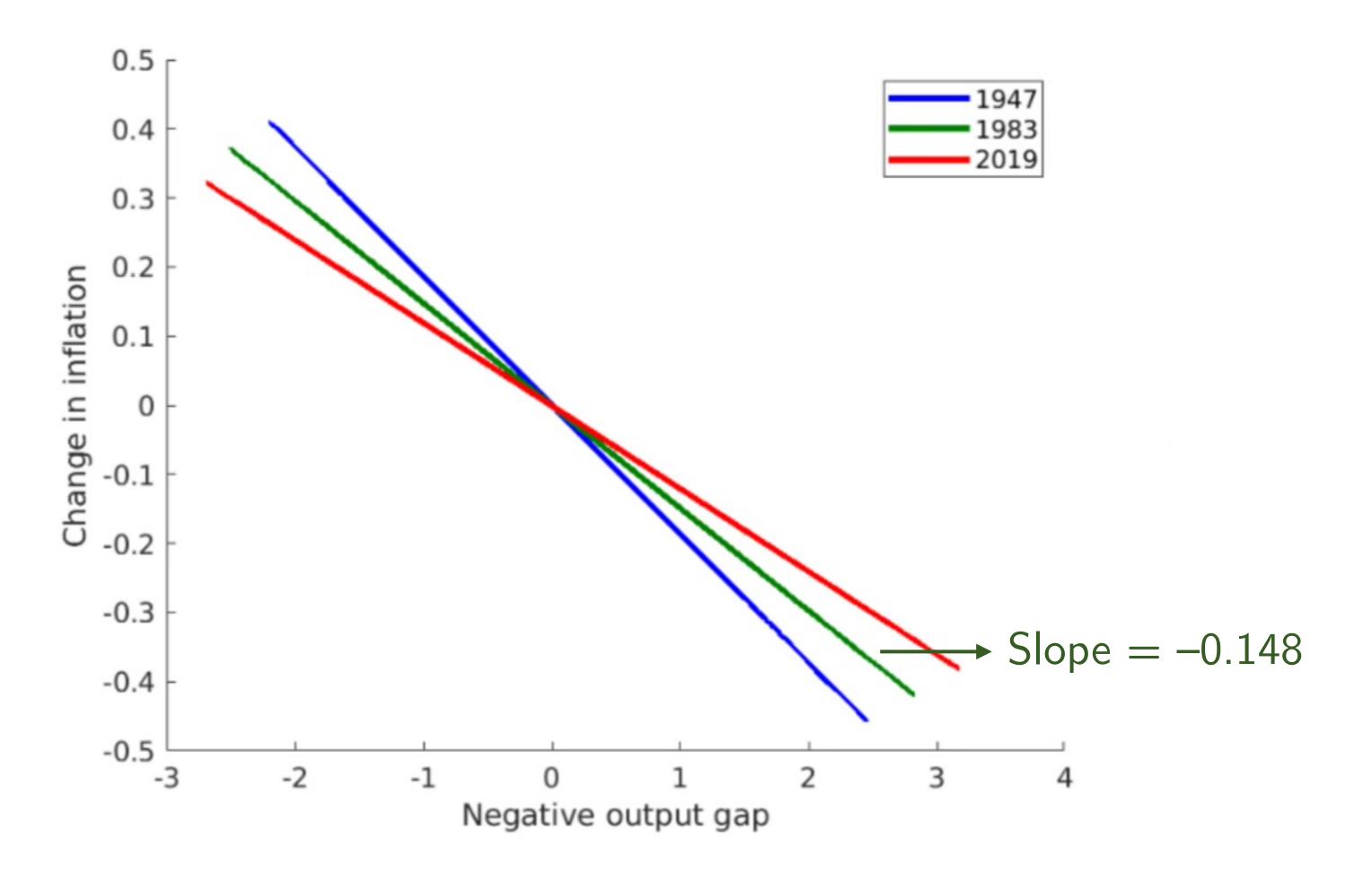
menu cost

Sector-specific std. dev. of idiosyncratic productivity shock

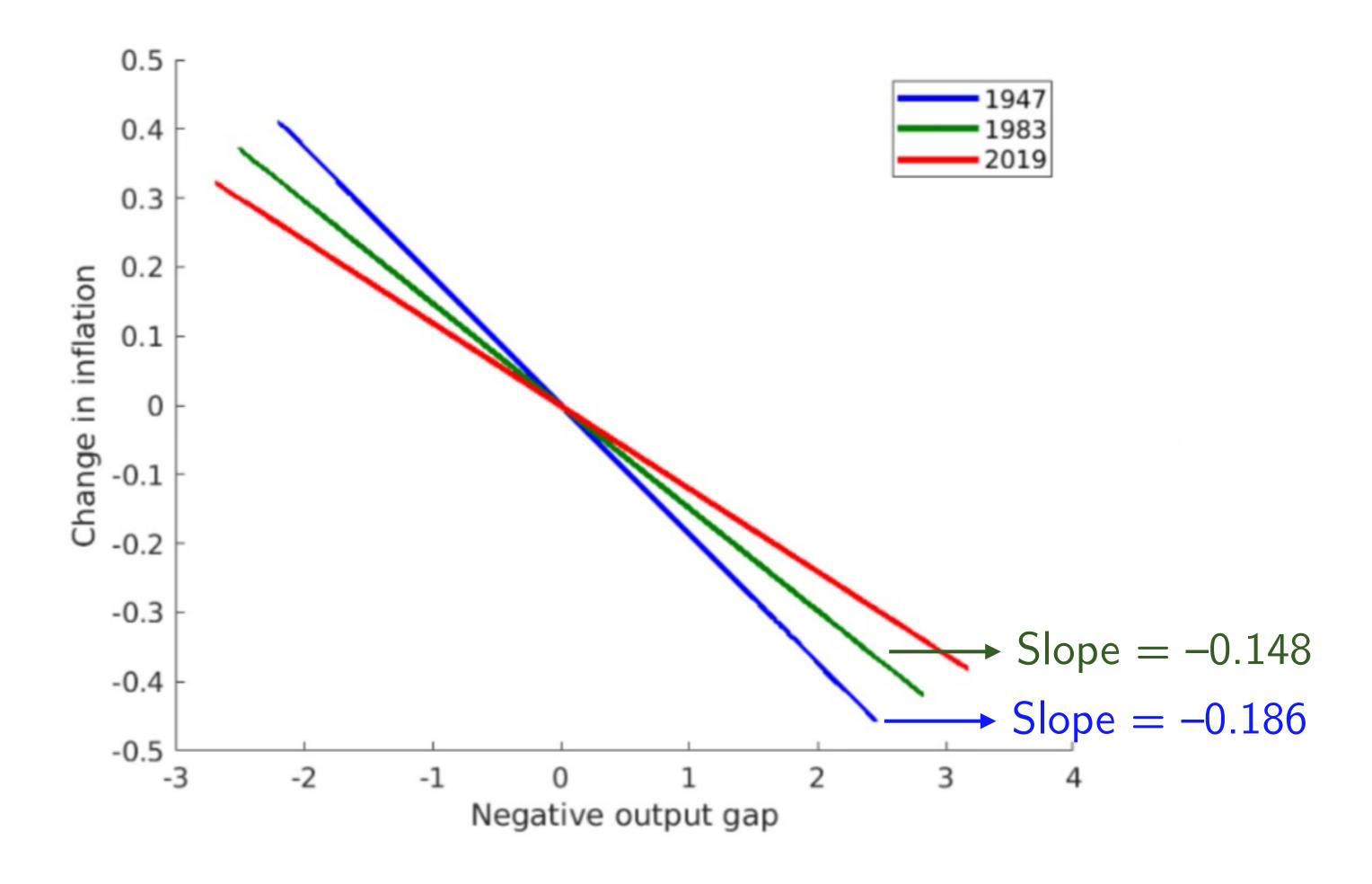
					productivity	/ SHOCK
Sector #	Target Mome	nts: Price change	Estima	ted Parameters	Weight (%)	
	Frequency (%)	Absolute Size (%)	χ_j	$\sigma_{\epsilon,j}$	(1983)	
1	2.34	13.59	0.0057	0.0685	7.93	
2	3.34	14.16	0.0074	0.0824	3.72	
3	3.64	17.54	0.0043	0.0877	11.24	
4	4.39	9.94	0.0013	0.0471	6.03	
5	5.34	8.54	0.0008	0.0403	6.74	
6	6.15	10.92	0.0011	0.0531	7.27	
7	7.59	6.44	0.0004	0.0306	8.97	
8	8.99	9.31	0.0005	0.0377	9.64	
9	10.11	8.38	0.0005	0.0396	3.02	
10	13.25	6.75	0.0001	0.0242	7.15	
11	22.34	13.93	0.0000	0.0195	3.18	
12	30.23	8.71	0.0004	0.0712	11.60	
13	49.61	7.78	0.0002	0.0857	6.16	
14	92.95	5.31	0.0000	0.0513	7.30	Robustness

Model v Data

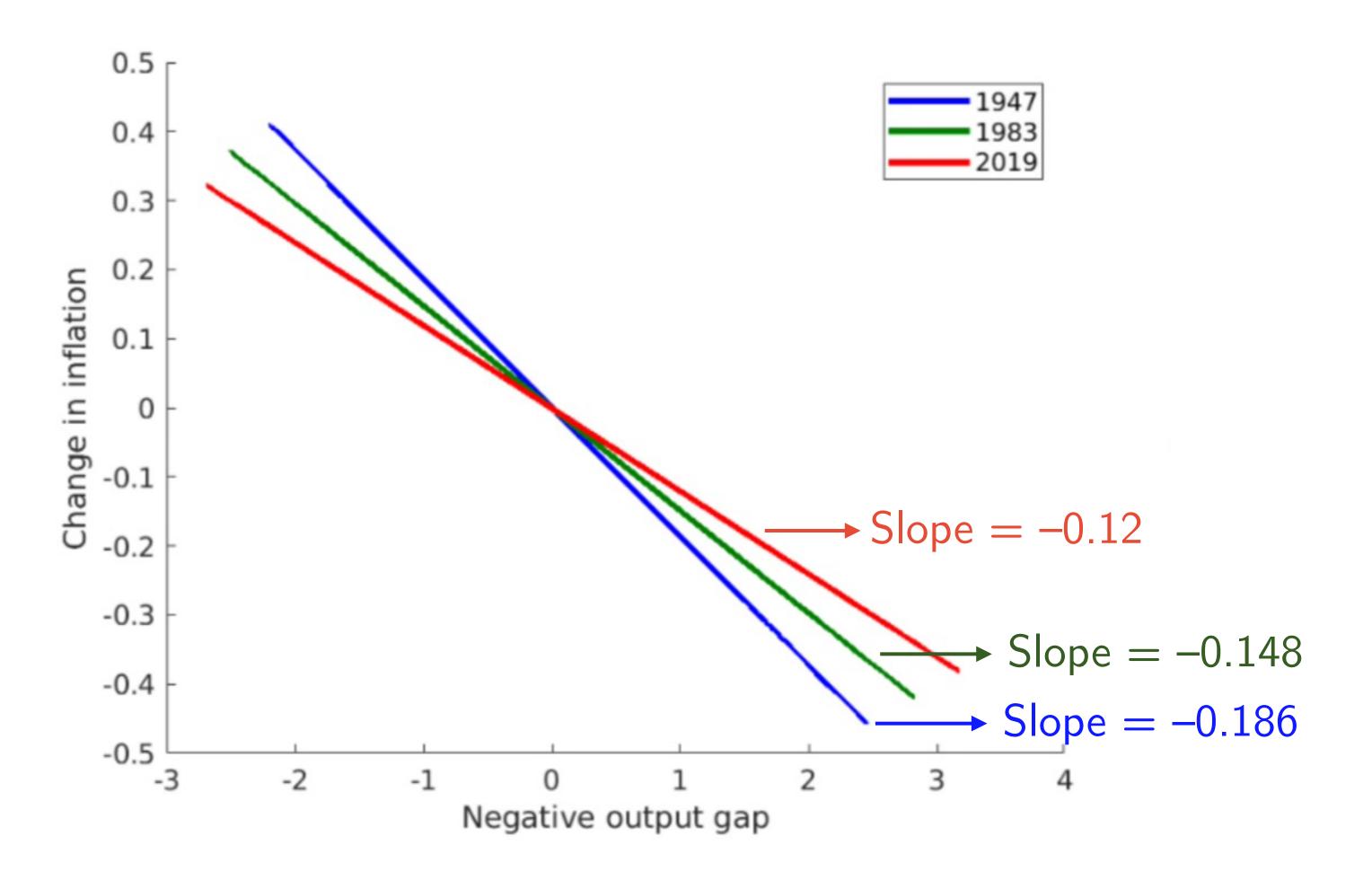
- Data: slope of the Phillips Curve in 1983 = -0.15
 - Headline inflation
 - Real GDP minus CBO's potential output
 - Estimation sample: 1973–1993


Model v Data

- Data: slope of the Phillips Curve in 1983 = -0.15
 - Headline inflation
 - Real GDP minus CBO's potential output
 - Estimation sample: 1973–1993
- Model: slope of the Phillips Curve in 1983 = -0.148
 - Also comparable to Rubbo (2020)
 - Slope of 0.12 in 1980 through a calibrated multisector menu cost model with inputoutput linkages


Δ Industrial Composition \Longrightarrow Δ Phillips Curve

- Hold fixed:
 - Calibrated parameters
 - Nominal demand shocks
- Change only share of sector in the economy_{it}
 - As implied by the share of product in the economy_{it}
 - As implied by the industrial composition of the economy for the given year
- Simulate the Phillips curve given the new sector distribution
 - One for each year: 1947–2019


• These changes in the industrial composition have led to a **35.7 percent flattening** of the slope of the Phillips curve over the 1947–2019 period

• These changes in the industrial composition have led to a **35.7 percent flattening** of the slope of the Phillips curve over the 1947–2019 period

• These changes in the industrial composition have led to a **35.7 percent flattening** of the slope of the Phillips curve over the 1947–2019 period

• What is the effect of industrial composition changes on the distribution of price change frequency?

What industrial composition shifts have driven this effect?

What do these shifts imply for the slope of the Phillips curve?

- What is the effect of industrial composition changes on the distribution of price change frequency?
 - Broad declines in the distribution
 - Median fallen from 9.2 to 6.9

What industrial composition shifts have driven this effect?

What do these shifts imply for the slope of the Phillips curve?

- What is the effect of industrial composition changes on the distribution of price change frequency?
 - Broad declines in the distribution
 - Median fallen from 9.2 to 6.9

- What industrial composition shifts have driven this effect?
 - Primary and second industries towards tertiary industries
 - Tertiary industries associated with products that have a lower freq. of price change
- What do these shifts imply for the slope of the Phillips curve?

- What is the effect of industrial composition changes on the distribution of price change frequency?
 - Broad declines in the distribution
 - Median fallen from 9.2 to 6.9

- What industrial composition shifts have driven this effect?
 - Primary and second industries towards tertiary industries
 - Tertiary industries associated with products that have a lower freq. of price change
- What do these shifts imply for the slope of the Phillips curve?
 - Slope flatter by 35.7%

Limitation of BLS Weights

• CPI:

- Weights only available at a higher level of aggregation (item strata rather than ELI)
- Major reclassification of products (1977, 1988, 1998)
 - Nakamura and Steinsson (2008) provide concordance for a consistent panel between 1977–2019
 - But pre-1977 data cannot be used in the same distribution

• PPI:

- Weights only available starting in 1998
- Products line up imperfectly with the products for which Nakamura and Steinsson (2008) compute a frequency of price change

Discussion of Assumptions

- To isolate the role of industrial composition changes, we make two assumptions:
 - Price—change frequency of individual products within each industry remained constant
 - The intensity of products sold within each industry remained constant

Discussion of Assumptions

- To isolate the role of industrial composition changes, we make two assumptions:
 - Price—change frequency of individual products within each industry remained constant
 - The intensity of products sold within each industry remained constant
- Checks to determine if the first assumption may be introducing bias:
 - Estimates of price—change frequency from a different sample period (BLS microdata)
 - Time-varying estimates of price-change frequency in the service sector (Nakamura and Steinsson (2018))

Discussion of Assumptions

- To isolate the role of industrial composition changes, we make two assumptions:
 - Price—change frequency of individual products within each industry remained constant
 - The intensity of products sold within each industry remained constant
- Checks to determine if the first assumption may be introducing bias:
 - Estimates of price—change frequency from a different sample period (BLS microdata)
 - Time—varying estimates of price-change frequency in the service sector (Nakamura and Steinsson (2018))
- Check to determine if the second assumption may be introducing bias:
 - Time—varying weights of PPI products (BLS)

Static Price-Change Frequency From Different Periods

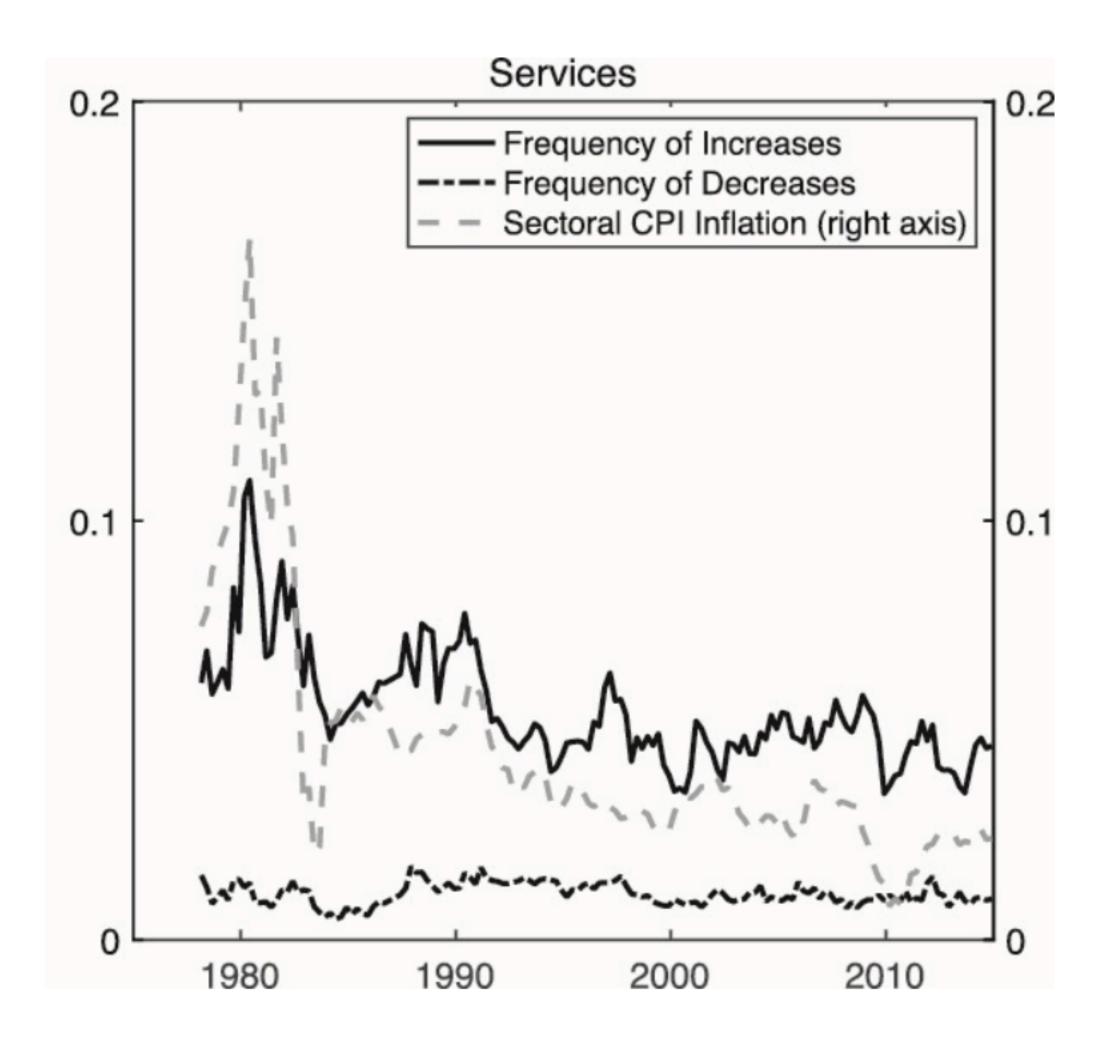
• BLS microdata on prices:

- Compute price—change frequency for CPI products from different samples
 - 1998–2005 (baseline)

Price-Change Freq. From	1947	1983	2019
1998–2005	9.2	8.2	6.9

Static Price—Change Frequency From Different Periods

- BLS microdata on prices:
 - Compute price—change frequency for CPI products
 - 1998–2005 (baseline)
 - 1988–1997


Price-Change Freq. From	1947	1983	2019
1998–2005	9.2	8.2	6.9
1988–1997	9.0	8.4	7.3

Static Price-Change Frequency From Different Periods

- BLS microdata on prices:
 - Compute price—change frequency for CPI products
 - 1998–2005 (baseline)
 - 1988–1997
 - 2010–2019

Price-Change Freq. From	1947	1983	2019
1998–2005	9.2	8.2	6.9
1988–1997	9.0	8.4	7.3
2010-2019	10.1	8.4	6.9

Service Sector: Time-Varying Price Change Frequency

The figure shows the frequency of price change (increases and decreases) for products in the service industry from 1978 through 2015. To construct the frequency series plotted in this figure, Nakamura et al. (2018) calculates the mean frequency of price increases and decreases in each ELI for each month. They then take the weighted median across ELIs for services separately and plot them. Sources: Nakamura et al. (2018).

PPI Products: Time-Varying Weights

- Employ time-varying PPI weights data and compare to the fixed weights baseline
 - Weights capture the intensity of products sold within an industry
 - Available starting in 1998

PPI Products: Time-Varying Weights

- Employ time-varying PPI weights data and compare to the fixed weights baseline
 - Weights capture the intensity of products sold within an industry
 - Available starting in 1998
 - The price—change frequency distributions are similar

Percentile	1998	2004	2009	2014	2019			
Panel A: Weights Fixed to 1998 Weights								
10%	3.1	3.2	3.2	3.2	3.1			
25%	4.3	4.5	4.5	4.5	4.3			
50%	7.9	7.9	7.8	7.8	7.4			
75%	14.9	13.8	12.7	13.9	12.1			
90%	41.9	42.4	42.4	43.1	41.9			
Panel B: Var	rying V	Veights						
10%	3.1	3.1	3.2	3.3	3.2			
25%	4.3	4.5	4.5	4.5	4.3			
50%	7.9	7.9	7.8	7.8	7.5			
75%	14.9	14.4	13.3	14.9	12.4			
90%	41.9	42.4	42.4	46.5	41.9			

Limitation of BLS Weights

• CPI:

- Weights only available at a higher level of aggregation (item strata rather than ELI)
- Major eclassification of products (1977, 1988, 1998)
 - Nakamura and Steinsson (2008) provide concordance for a consistent panel between 1977–2019
 - But pre-1977 data cannot be used in the same distribution

Robustness: BLS Weights vs Industry Weights

Other Percentiles: BLS Weights vs Industry Weights

Conclusion

- We isolate the impact of changes in industrial composition during 1947–2019 on:
 - the distribution of products in the US economy
 - consequently the distribution of the frequency of price change across the products
- We found: US economy exhibits greater price stickiness in 2019 compared to 1947
 - Median frequency of price change fallen from 9.2% to 6.9%
 - Mean frequency of price change fallen from 24.2% to 15.1%

Conclusion

- We isolate the impact of changes in industrial composition during 1947–2019 on:
 - the distribution of products in the US economy
 - consequently the distribution of the frequency of price change across the products
- We found: US economy exhibits greater price stickiness in 2019 compared to 1947
 - Median frequency of price change fallen from 9.2% to 6.9%
 - \bullet Mean frequency of price change fallen from 24.2% to 15.1%
- Then we analyzed the degree to which these distributional changes affected the slope of the Phillips curve over this period
- We found: US Phillips curve 35.7% flatter
 - Cause: long-term structural forces, unlikely to revert
 - Central banks should account for the flattening in their decisions

Product-Industry Mapping Examples

Source	Item category	Industry		
CPI	Books not through book clubs (RG022)	(451211) Book Stores		
CPI	Automobile batteries (TC021)	(441310) Automotive Parts and Accessories Stores		
CPI	Motor oil (TC022)	(441310) Automotive Parts and Accessories Stores		
CPI	Tax prep & other accounting (GD052)	(541213) Tax Preparation Services		
CPI	Tax prep & other accounting (GD052)	(541219) Other Accounting Services		
PPI	Soft drinks (0262)	(312111) Soft Drink Manufacturing		
PPI	Residential natural gas (0551)	(221210) Natural Gas Distribution		
PPI	Commercial natural gas (0552)	(221210) Natural Gas Distribution		
PPI	Textile housefurnishings (0382)	(314110) Carpet and Rug Mills		
PPI	Textile housefurnishings (0382)	(314120) Curtain and Linen Mills		

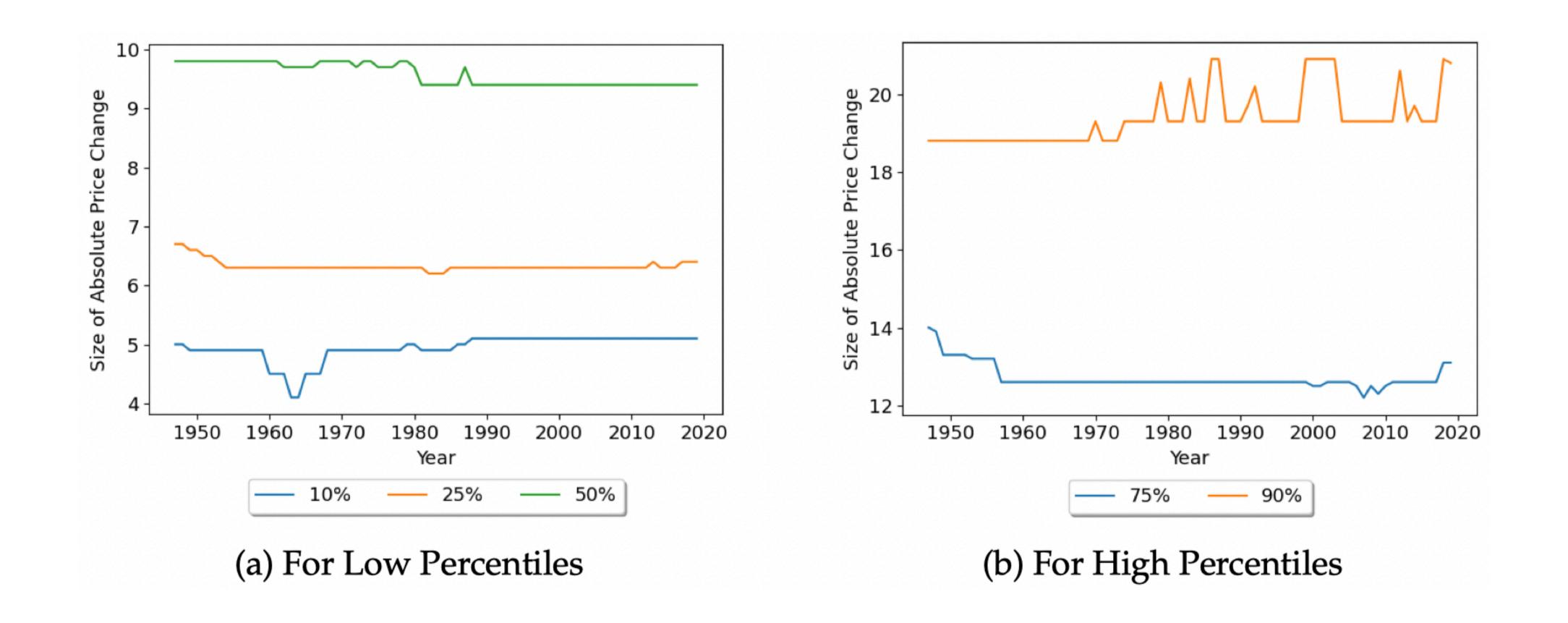
Algorithm

Share of product in economy $_{it} = \sum_{j}$ Share of industry in economy $_{jt} \times$ Share of product in industry $_{ij}$ • BEA and World KLEMS Initiative

• Available for 65 industries

• Dynamic: 1947–2019 annual data

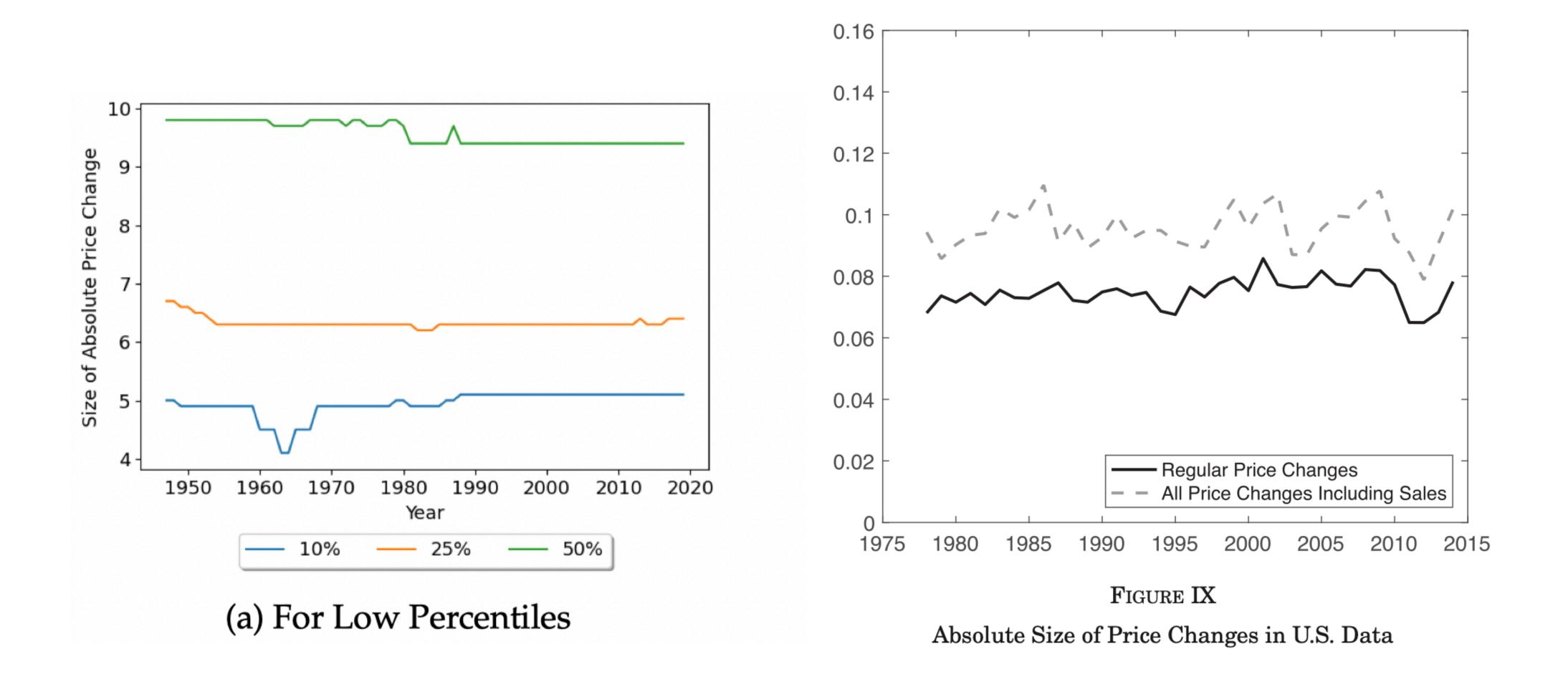
- 1. 620 products (272 CPI \pm 348 PPI) mapped to one or more of 2017 6-digit NAICS industries (of which there are 65)
 - ▶ We are able to map 613 products to 51 industries
- 2. Aggregate industries to the BEA/KLEMS World-level for which we have industry-shares data
- 3. Compute the *share of product in industry* $_{ij}$ using:
 - i) set $a_{i,j} = 1$ if product i sold in industry j; zero otherwise
 - ii) compute raw weight of product i sold in industry j: $b_{i,j} = \frac{a_{i,j}}{\sum_{j} a_{i,j}}$
 - iii) compute proportion of industry j sold by product i: $c_{i,j} = \frac{\omega_i b_{i,j}}{\sum_i \omega_i b_{i,j}}$, where $\omega_i = \text{expenditure weight}^*$


Back

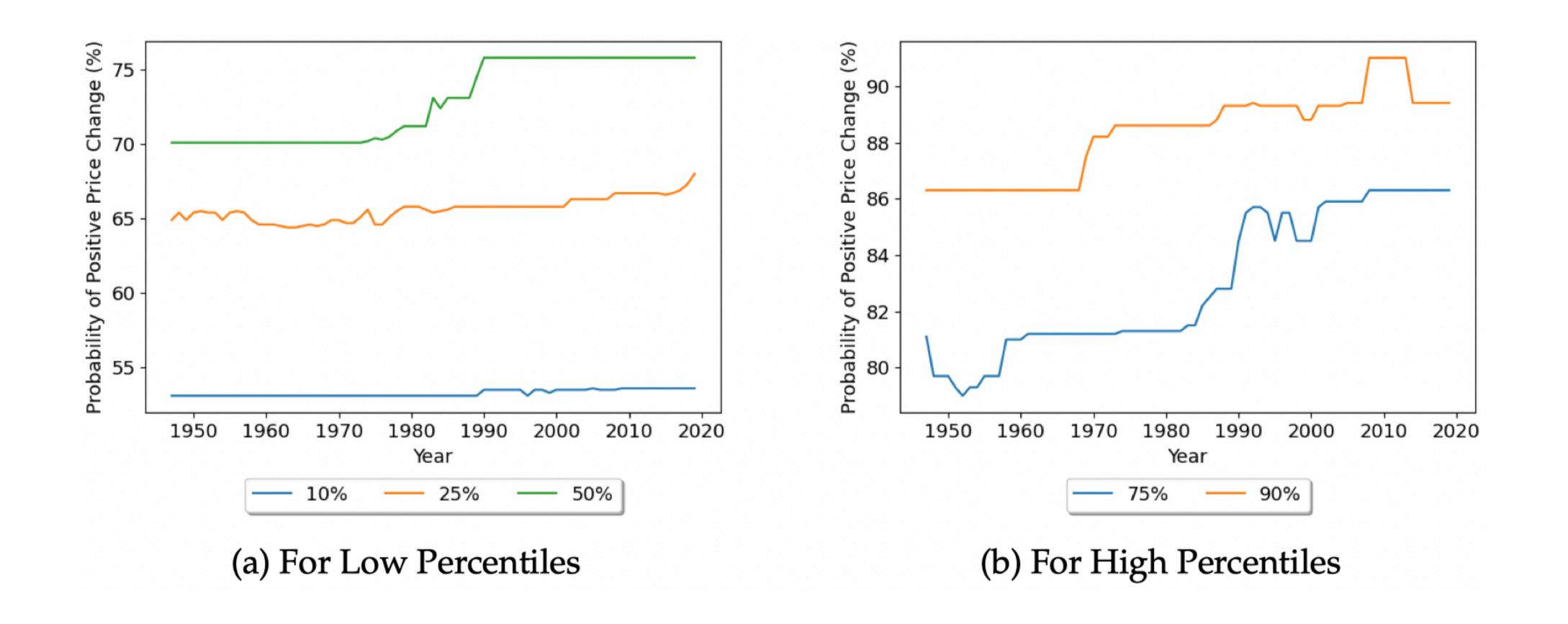
^{*} expenditure weight available for CPI products; for PPI products we set it to 1 divided by the total # of PPI products

Robustness Checks

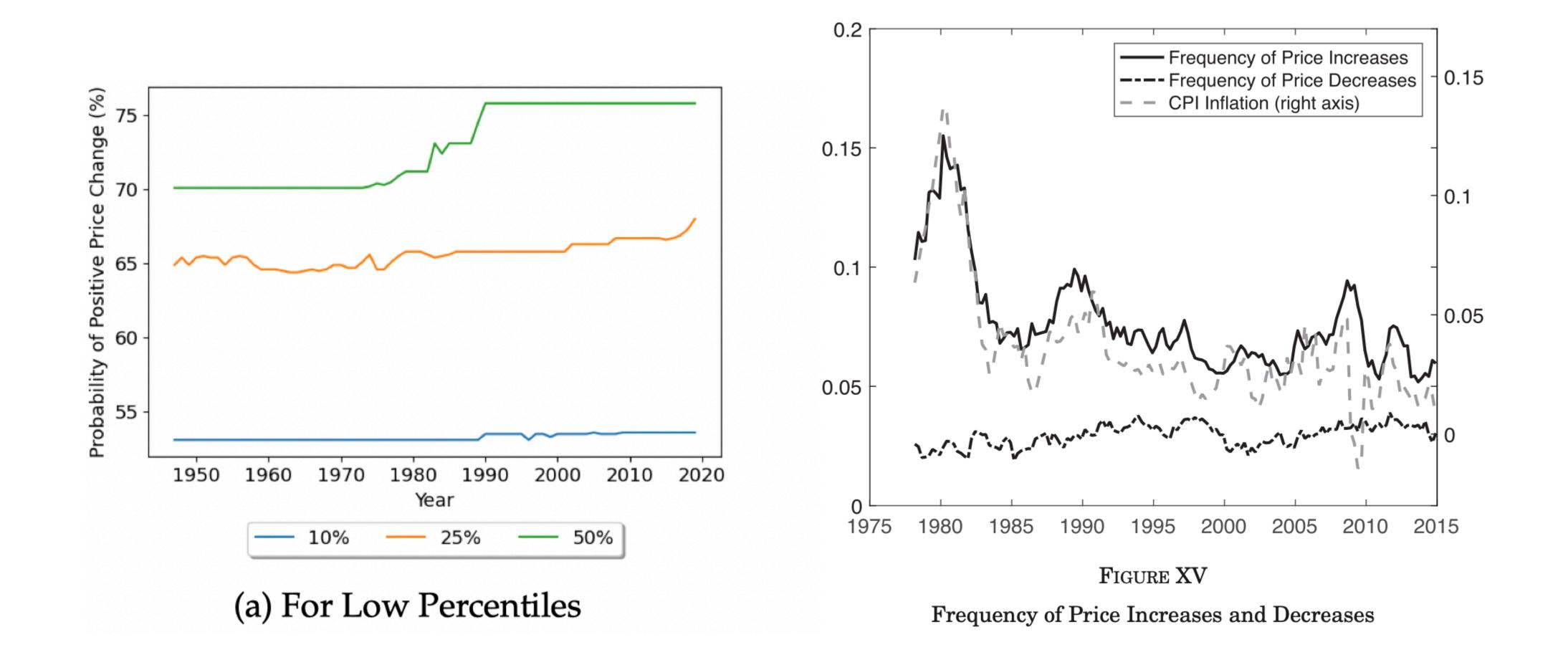
Method	1947	1983	2019
A. Baseline		8.2	6.9
B. Including sales		8.7	7.8
C. One Klems	9.2	8.2	6.9
D. PPI weight		8.7	7.8
E. Same weight	9.1	8.0	7.2
F. No large products		7.8	6.9
G. Aggregate by industry	10.7	8.4	8.2
H. CPI Only		8.2	6.9
I. PPI Only	9.7	7.4	7.2
J. Gross Output	9.2	8.2	7.8
K. Intermediate Inputs	9.5	8.7	8.2
L. Labor Compensation	9.2	7.4	6.3
M. Consumption Share	10.9	10.9	9.2
N. Consumption Share with Shelter	10.9	8.0	8.0


Distribution of absolute size of price change: 1947–2019

No systematic impact


Distribution of absolute size of price change: 1947–2019

• Nakamura et al. (2018) also find roughly no change in the abs. size. of P change


Distribution of probability of positive price change: 1947–2019

Shifted up

Distribution of probability of positive price change: 1947–2019

• Nakamura et al. (2018) find a reduction in the median prob. of positive P change

Model Details

- 14 sectors
- Sector-specific:
 - Price stickiness in the form of menu costs χ_i
 - ullet Standard deviation of firms' idiosyncratic productivity shocks $\sigma_{\!arepsilon,j}$
- Round-about production structure
 - Intermediate inputs as well as labor used in production
- Nominal target for monetary policy:
 - Nominal aggregate demand : $S_t = P_t C_t$
 - ullet Monetary authority targets a path of S_t
- Idiosyncratic shocks to firms' productivity:

$$\log A_t(z) = \varrho \log A_{t-1}(z) + \epsilon_t(z)$$
 where $\epsilon_t \sim N(0, \sigma_{\epsilon,j}^2)$ are independent

Aggregate shocks to nominal demand:

 $\log S_t = \mu + \log S_{t-1} + \eta_t$ where μ represents trend inflation, $\eta_t \sim N(0, \sigma_n^2)$ are independent

Model Details

- Menu cost

 Firms' optimal price-setting decision is dynamic
- Recursive formulation:

$$V\left(A_{t}(z), \frac{p_{t-1}(z)}{P_{t}}, \frac{S_{t}}{P_{t}}\right) = \max_{p_{t}(z)} \left\{ \Pi_{t}^{R}(z) + \mathbb{E}_{t} \left[D_{t,t+1}^{R} V\left(A_{t+1}(z), \frac{p_{t}(z)}{P_{t+1}}, \frac{S_{t+1}}{P_{t+1}} \right) \right] \right\}$$

- ullet Solution: intractable because state space of the firm's problem includes the aggregate price level P_t , which is an infinite dimensional object
- Assumption to make the model tractable: price level perceived to evolve depending on only the nominal demand deflated by the preceding period's aggregate price level:

$$\frac{P_t}{P_{t-1}} = \Gamma\left(\frac{S_t}{P_{t-1}}\right)$$

- \bullet P_{t-1} , though endogenous, is in the information's set at time t
- S_t exogenous
- General equilibrium solution computed using Value Function Iteration on a discretized state space

Calibration

Parameter	Description	Value
σ	Coefficient of relative risk aversion	1
ψ	Labor disutility convexity	0
β	Discount factor	$0.96^{\frac{1}{12}}$
θ	Elasticity of substitution	4
L	Steady-state labor supply	0.33
μ	Mean growth rate of nominal AD	0.0028
σ	Std. dev. of the growth of nominal AD	0.0065
s_m	Share of int. inputs in production	0/0.7
ρ	Persistence in firms' productivity	0.7

Model Robustness

Year	Frequency (%)		Absolute Size (%)		Prob. Positive (%)	
	Data	Model	Data	Model	Data	Model
Panel A. Mean						
1947	24.2	24.0	10.8	9.4	70.2	71.2
1983	18.7	18.6	10.0	10.1	71.9	73.0
2019	15.1	15.0	10.3	10.3	74.9	75.0
Panel B. Median						
1947	9.2	9.2	9.8	8.6	70.1	70.5
1983	8.2	7.4	9.4	9.9	73.1	73.4
2019	6.9	7.3	9.4	9.9	75.8	73.6

Basic New Keynesian Phillips Curve

$$\pi_t = \kappa m c_t + \beta \mathbb{E}_t \pi_{t+1}$$

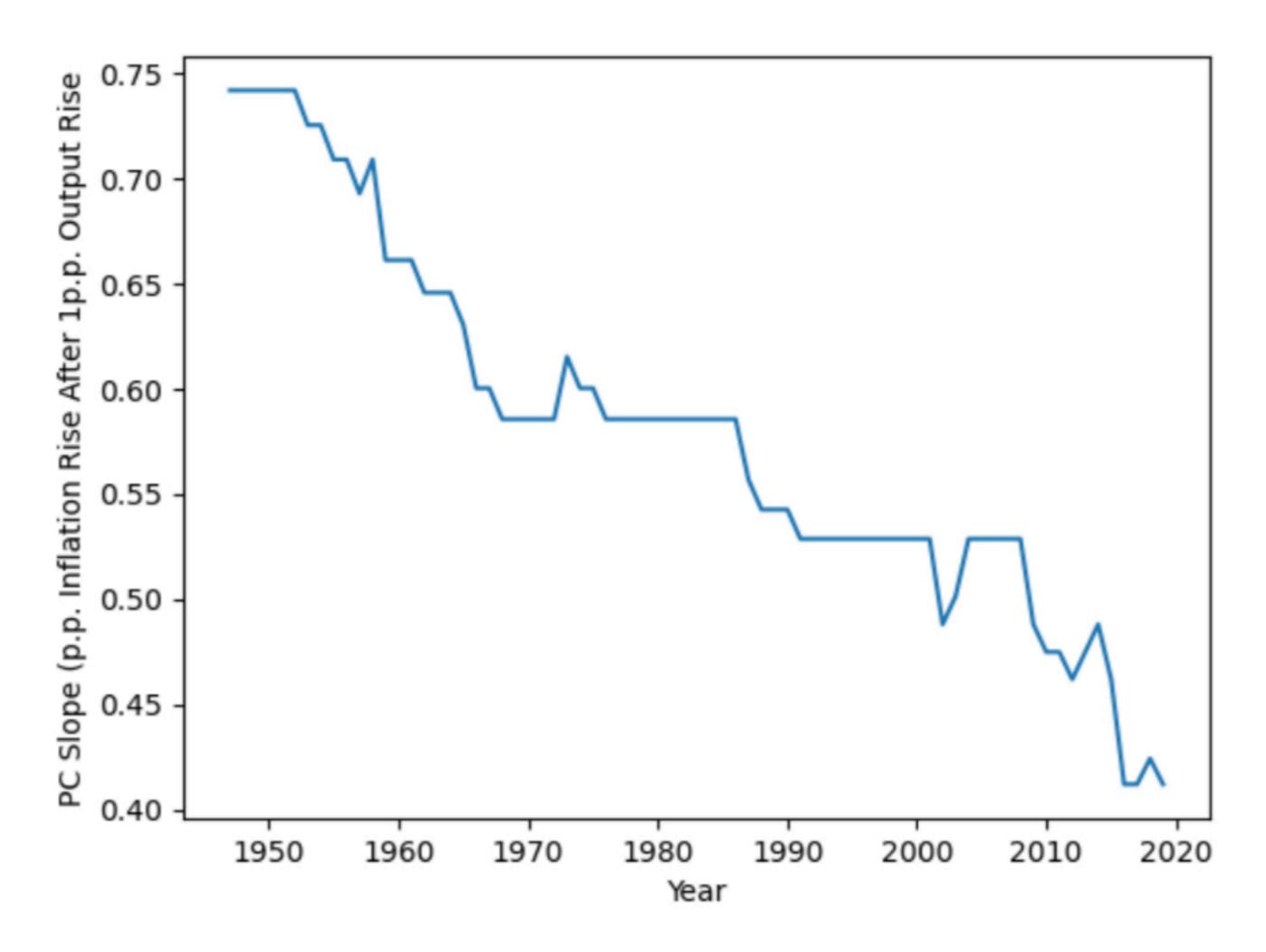
Under log utility and linear labor disutility:

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1}$$

where

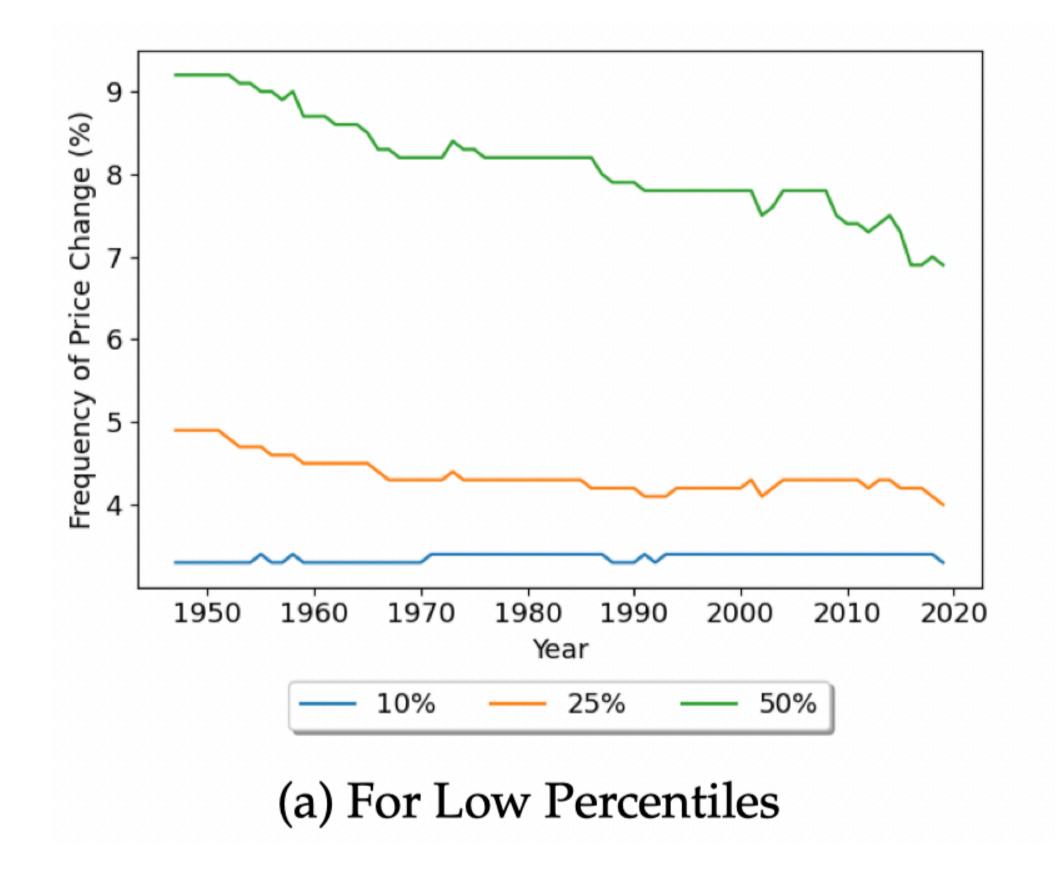
$$\kappa = \frac{\lambda \left[1 - (1 - \lambda)\beta\right]}{1 - \lambda}$$

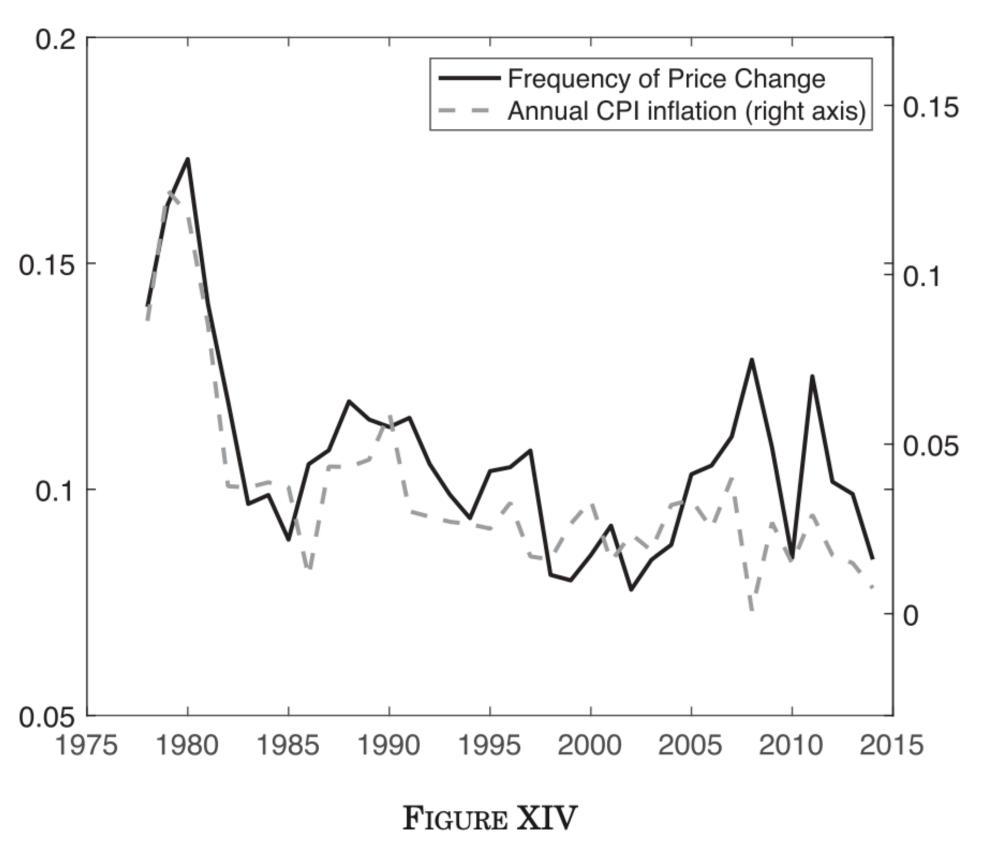
- Monthly parameters:
 - $\beta = 0.96^{\frac{1}{12}}$
 - \bullet λ = aggregate frequency of price change
 - Time-varying $\Longrightarrow \kappa_t$


Basic New Keynesian Phillips Curve

$$\pi_t = \kappa_t y_t + \beta \mathbb{E}_t \pi_{t+1}$$

- $\lambda_{1947} = 9.2\% = 0.092$
- $\kappa_{1947} = 0.0096$
- Impact of known 1 p.p. rise in y_t for one year:
 - 12 months of high y_t
 - In earlier months, future inflation also rises
- Rise of 0.74 p.p. in inflation


Basic New Keynesian Phillips Curve



- Slope declines from −0.74 in 1947 to −0.59 in 1983 to −0.41 in 2019
- Amount to a 44.5% flattening from 1947 to 2019

- Left panel: Economy's composition has shifted towards products/industries with relatively low frequency of price change
- Right panel: The frequency of price change at the product-level has also declined
- Therefore, the overall distribution plausibly shifted even further down

Back

Frequency of Price Change in U.S. Data