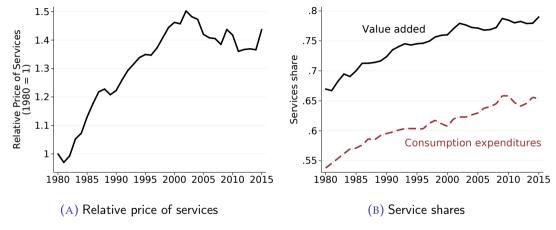
STRUCTURAL CHANGE AND THE RISE IN MARKUPS

Ricardo Marto FRB St. Louis

May 8th 2024

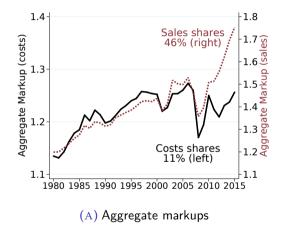

Spring Conference on Structural Changes and the Implications for Inflation Deutsche Bundesbank Eltville am Rhein

- Increase in monopoly power? Decline in competition? (Executive Order (2021))
 - Markups have increased markedly since the 1980s (De Loecker, Eeckhout, and Unger (2020), Hall (2018), Díez,
 Fan, and Villegas-Sánchez (2021))
 - Industries have become more concentrated (Grullon, Larkin and Michaely (2019), Covarrubias, Gutierrez and Philippon (2018))

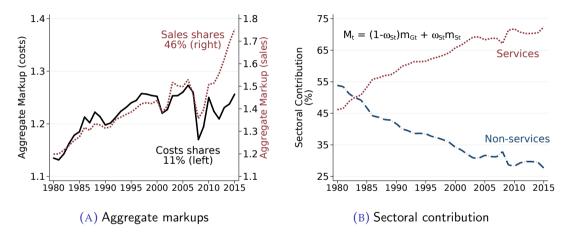
- Increase in monopoly power? Decline in competition? (Executive Order (2021))
 - Markups have increased markedly since the 1980s (De Loecker, Eeckhout, and Unger (2020), Hall (2018), Diez,
 Fan, and Villegas-Sánchez (2021))
 - Industries have become more concentrated (Grullon, Larkin and Michaely (2019), Covarrubias, Gutierrez and Philippon (2018))
- Current hypotheses
 - Rise of superstar firms (e.g. Autor, Dorn, Katz, Patterson, and Van Reenen (2020))
 - Firms are responding to the increase of barriers to entry or other fixed costs (e.g. De Ridder (2021))
 - Mismeasurement (e.g. Bond, Hashemi, Kaplan, and Zoch (2021), De Ridder, Grassi, and Morzenti (2022), Raval (2020), Traina (2018))

- Increase in monopoly power? Decline in competition? (Executive Order (2021))
 - Markups have increased markedly since the 1980s (De Loecker, Eeckhout, and Unger (2020), Hall (2018), Diez,
 Fan, and Villegas-Sánchez (2021))
 - Industries have become more concentrated (Grullon, Larkin and Michaely (2019), Covarrubias, Gutierrez and Philippon (2018))
- Current hypotheses
 - Rise of superstar firms (e.g. Autor, Dorn, Katz, Patterson, and Van Reenen (2020))
 - Firms are responding to the increase of barriers to entry or other fixed costs (e.g. De Ridder (2021))
 - Mismeasurement (e.g. Bond, Hashemi, Kaplan, and Zoch (2021), De Ridder, Grassi, and Morzenti (2022), Raval (2020), Traina (2018))
- My hypothesis: structural change ⇒ rise in markups

>>> WHY STRUCTURAL CHANGE?



Data: CEX and KLEMS.


• $P_t = M_t \times MC_t$: Markups or/and marginal costs?

Examples of prices of goods and services
Patterns across European countries

>>> The rise in markups

>>> THE RISE IN MARKUPS

Data: Compustat and KLEMS.

>>> THE RISE OF MARKUPS IN SERVICES

	Non-services			Services		
	1980	2015	Δ	1980	2015	Δ
Average markups (cogs)	1.13	1.21	7.3%	1.14	1.27	11.9%
Average markups (cogs + sga)	1.18	1.44	22.3%	1.19	1.65	37.8%
Average markups (sales)	1.17	1.47	25.5%	1.22	1.86	52.2%
Sectoral shares (comp + II)	54.0	28.6	-47.0%	46.0	71.4	55.1%
Sectoral shares (gross output)	47.4	27.6	-41.8%	52.6	72.4	37.7%

Data: Compustat and KLEMS.

Average markups over time

Average markups by subsector

Distribution of markups by sector

→ Fixed costs, superstars, and other stats

- Can drivers of structural change explain the rise in markups?
 - Stronger increase in average markups in services than in manufacturing?
 - Jointly with decline in relative price of manufacturing and reallocation of economic activity?

- Can drivers of structural change explain the rise in markups?
 - Stronger increase in average markups in services than in manufacturing?
 - Jointly with decline in relative price of manufacturing and reallocation of economic activity?
- Yes, but drivers of structural change have opposing roles
 - I. Differential rates of technological progress (e.g. Ngai and Pissarides (2007))
 - \downarrow Relative price of goods
 - II. Income effects (e.g. Kongsamut, Rebelo, and Xie (2001), Boppart (2014))
 - \uparrow Demand for luxuries $\Rightarrow \uparrow$ Services share

- Can drivers of structural change explain the rise in markups?
 - Stronger increase in average markups in services than in manufacturing?
 - Jointly with decline in relative price of manufacturing and reallocation of economic activity?
- Yes, but drivers of structural change have opposing roles
 - I. Differential rates of technological progress (e.g. Ngai and Pissarides (2007))
 - \downarrow Relative price of goods $\Rightarrow \uparrow$ Markups of goods
 - II. Income effects (e.g. Kongsamut, Rebelo, and Xie (2001), Boppart (2014))
 - \uparrow Demand for luxuries $\Rightarrow \uparrow$ Services share

- Can drivers of structural change explain the rise in markups?
 - Stronger increase in average markups in services than in manufacturing?
 - Jointly with decline in relative price of manufacturing and reallocation of economic activity?
- Yes, but drivers of structural change have opposing roles
 - I. Differential rates of technological progress (e.g. Ngai and Pissarides (2007))
 - \downarrow Relative price of goods $\Rightarrow \uparrow$ Markups of goods
 - II. Income effects (e.g. Kongsamut, Rebelo, and Xie (2001), Boppart (2014))
 - \uparrow Demand for luxuries \Rightarrow \uparrow Services share \Rightarrow \uparrow Markups of services

- Class of preferences that yields novel results about price elasticity of demand
 - \Rightarrow Changes in prices, income, and demand composition impact markups

- Class of preferences that yields novel results about price elasticity of demand
 - \Rightarrow Changes in prices, income, and demand composition impact markups
 - A. Price elasticity of demand increases with prices
 - Imperfect cost pass-through (e.g. Fabra and Reguant (2014), Nakamura and Zerom (2010))
 - \Rightarrow Productivity gains are not fully transferred to consumers and kept by firms as markup

- Class of preferences that yields novel results about price elasticity of demand
 - \Rightarrow Changes in prices, income, and demand composition impact markups
 - A. Price elasticity of demand increases with prices
 - Imperfect cost pass-through (e.g. Fabra and Reguant (2014), Nakamura and Zerom (2010))
 - \Rightarrow Productivity gains are not fully transferred to consumers and kept by firms as markup
 - B. Price elasticity of demand decreases with income
 - As people become wealthier, they become less price sensitive

- Class of preferences that yields novel results about price elasticity of demand
 - \Rightarrow Changes in prices, income, and demand composition impact markups
 - A. Price elasticity of demand increases with prices
 - Imperfect cost pass-through (e.g. Fabra and Reguant (2014), Nakamura and Zerom (2010))
 - \Rightarrow Productivity gains are not fully transferred to consumers and kept by firms as markup
 - B. Price elasticity of demand decreases with income
 - As people become wealthier, they become less price sensitive
- Do price elasticities of demand fall with income? (IRB-approved survey)

- Class of preferences that yields novel results about price elasticity of demand
 - \Rightarrow Changes in prices, income, and demand composition impact markups
 - A. Price elasticity of demand increases with prices
 - Imperfect cost pass-through (e.g. Fabra and Reguant (2014), Nakamura and Zerom (2010))
 - \Rightarrow Productivity gains are not fully transferred to consumers and kept by firms as markup
 - B. Price elasticity of demand decreases with income
 - As people become wealthier, they become less price sensitive
- Do price elasticities of demand fall with income? (IRB-approved survey)
 - Yes, they do
 - Novel experimental evidence on relationship between income and price elasticities

Quantitative framework

>>> QUANTITATIVE MODEL

Markets

- 2-sector GE model of structural change $j = \{G, S\}$ with differentiated varieties (ω)
- Monopolistic competition

Incumbent firms

- Firms are retailers and produce a variety within a sector
- Choose price and quality to maximize profits
- Free entry in each sector

Consumers

• Heterogeneous in skills $i \in \{H, L\}$

• Start from the indirect utility of consumer *i*

$$v(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}) = u(\boldsymbol{c}^{\star}(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}))$$

• Start from the indirect utility of consumer *i*

$$v(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}) = v_G(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{q}_{G_t})^{\lambda} v_S(e_{i_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{S_t})^{1-\lambda}, \qquad \lambda \in (0, 1)$$

• Start from the indirect utility of consumer *i*

$$v(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}) = v_G(e_{i_t}, \boldsymbol{p}_{G_t}, \boldsymbol{q}_{G_t})^{\lambda} v_S(e_{i_t}, \boldsymbol{p}_{S_t}, \boldsymbol{q}_{S_t})^{1-\lambda}, \qquad \lambda \in (0,1)$$

• Additively separable across varieties of j + Finite choke price

• Start from the indirect utility of consumer *i*

$$v(e_{i_t}, p_{G_t}, p_{S_t}, q_{G_t}, q_{S_t}) = v_G(e_{i_t}, p_{G_t}, q_{G_t})^{\lambda} v_S(e_{i_t}, p_{S_t}, q_{S_t})^{1-\lambda}, \qquad \lambda \in (0, 1)$$

• Additively separable across varieties of j + Finite choke price

$$v_{j}(e_{i_{t}}, \boldsymbol{p}_{j_{t}}, \boldsymbol{q}_{j_{t}}) = \frac{1}{1+\gamma} \int_{N_{j_{t}}} \left[\left(\underbrace{\frac{c^{\mathsf{hoke price}}}{\phi_{j} e_{i_{t}}} - p_{j_{t}}(\omega)}_{e_{i_{t}}} \right) \underbrace{\frac{v_{\mathsf{ariety quality}}}{\varphi_{j_{t}}(\omega)^{\delta}}}_{q_{j_{t}}(\omega)} \right]^{1+\gamma} \mathrm{d}\omega, \qquad \Phi_{j, \gamma, \delta > 0}$$

• Start from the indirect utility of consumer *i*

$$v(e_{i_t}, p_{G_t}, p_{S_t}, q_{G_t}, q_{S_t}) = v_G(e_{i_t}, p_{G_t}, q_{G_t})^{\lambda} v_S(e_{i_t}, p_{S_t}, q_{S_t})^{1-\lambda}, \qquad \lambda \in (0, 1)$$

• Additively separable across varieties of j + Finite choke price

$$v_{j}(e_{i_{t}}, \boldsymbol{p}_{j_{t}}, \boldsymbol{q}_{j_{t}}) = \frac{1}{1 + \gamma} \int_{N_{j_{t}}} \left[\left(\underbrace{\overbrace{\boldsymbol{\phi}_{j} \ e_{i_{t}}}^{\text{choke price}} - p_{j_{t}}(\boldsymbol{\omega})}_{e_{i_{t}}} \right) \underbrace{\overbrace{\boldsymbol{\phi}_{j}}^{\text{variety quality}}}_{\boldsymbol{q}_{j_{t}}(\boldsymbol{\omega})^{\delta}} \right]^{1 + \gamma} d\boldsymbol{\omega}, \qquad \Phi_{j, \gamma, \delta > 0}$$

- Admit direct utility representation Direct utility
- Special case: Two-sector CES with quality $(\Phi_j = 0, \gamma < -1, \text{ and } \delta < 0)$ + Proposition

>>> DEMAND AND ELASTICITIES

• Use Roy's identity to write demand as function of income, prices, and quality

$$c_{ij_t}(\omega) = \left(\underbrace{\phi_j \, e_{i_t}}_{\text{choke price}} - p_{j_t}(\omega)\right)^{\gamma} \underbrace{q_{j_t}(\omega)^{\delta(1+\gamma)}}_{\text{variety quality}} \underbrace{A_{ij_t}}_{\text{sectoral composite}}$$

>>> DEMAND AND ELASTICITIES

• Use Roy's identity to write demand as function of income, prices, and quality

$$c_{ij_t}(\omega) = \left(\underbrace{\phi_j e_{i_t}}_{\text{choke price}} - p_{j_t}(\omega)\right)^{\gamma} \underbrace{q_{j_t}(\omega)^{\delta(1+\gamma)}}_{\text{variety quality}} \underbrace{A_{ij_t}}_{\text{sectoral composite}}$$

• Price elasticity of demand

$$\xi_{ij_t}(\omega) \equiv -\frac{\partial c_{ij_t}(\omega)}{\partial p_{j_t}(\omega)} \frac{p_{j_t}(\omega)}{c_{ij_t}(\omega)} = \frac{\gamma p_{j_t}(\omega)}{\varphi_j e_{i_t} - p_{j_t}(\omega)}$$

- Increasing in price, decreasing in income

>>> DEMAND AND ELASTICITIES

• Use Roy's identity to write demand as function of income, prices, and quality

$$c_{ij_t}(\omega) = \left(\underbrace{\phi_j e_{i_t}}_{\text{choke price}} - p_{j_t}(\omega)\right)^{\gamma} \underbrace{q_{j_t}(\omega)^{\delta(1+\gamma)}}_{\text{variety quality}} \underbrace{A_{ij_t}}_{\text{sectoral composite}}$$

• Price elasticity of demand

$$\xi_{ij_t}(\omega) \equiv -\frac{\partial c_{ij_t}(\omega)}{\partial p_{j_t}(\omega)} \frac{p_{j_t}(\omega)}{c_{ij_t}(\omega)} = \frac{\gamma p_{j_t}(\omega)}{\phi_j e_{i_t} - p_{j_t}(\omega)}$$

• Quality elasticity of demand

$$\sigma_{ij_t}(\omega) \equiv \frac{\partial c_{ij_t}(\omega)}{\partial q_{j_t}(\omega)} \frac{q_{j_t}(\omega)}{c_{ij_t}(\omega)} = \delta(1+\gamma)$$

- Same across consumers and sectors, independent of quality

>>> INCUMBENT FIRMS

• Each firm produces variety ω of sector j using CES technology

$$y_{j_t} = z_{j_t} \left[\alpha \times_t h_{j_t}^{\iota} + (1 - \alpha) \ell_{j_t}^{\iota} \right]^{1/\iota} \qquad (0 < \iota < 1)$$

- Neutral technological progress: $\uparrow z_{j_t}$
- Skill-biased technological progress: $\uparrow x_t$

>>> INCUMBENT FIRMS

• Each firm produces variety ω of sector j using CES technology

$$y_{j_t} = z_{j_t} \left[\alpha x_t h_{j_t}^{\iota} + (1 - \alpha) \ell_{j_t}^{\iota} \right]^{1/\iota} \qquad (0 < \iota < 1)$$

- Neutral technological progress: $\uparrow z_{j_t}$
- Skill-biased technological progress: $\uparrow x_t$
- MC \downarrow in neutral and skill-biased technological progress, \uparrow in skill premium \rightarrow Marginal costs

>>> INCUMBENT FIRMS

• Each firm produces variety ω of sector j using CES technology

$$y_{j_t} = z_{j_t} \left[\alpha x_t h_{j_t}^{\iota} + (1 - \alpha) \ell_{j_t}^{\iota} \right]^{1/\iota} \qquad (0 < \iota < 1)$$

- Neutral technological progress: $\uparrow z_{j_t}$
- Skill-biased technological progress: $\uparrow x_t$
- MC \downarrow in neutral and skill-biased technological progress, \uparrow in skill premium \rightarrow Marginal costs
- · Firms choose price and quality to maximize profits

$$\pi_{j_t} = \max_{p_{j_t}, q_{j_t}} (p_{j_t} - mc_{j_t}) y_{j_t} - \kappa q_{j_t}^{\vartheta} - f_{j_t}$$

s.t.
$$y_{j_t} = \mu_{H_t} c_{H,j_t} + \mu_{L_t} c_{L,j_t}$$

• Output price is a markup over marginal costs

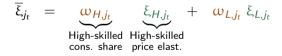
$$p_{j_t} = m_{j_t} m c_{j_t}$$

• Output price is a markup over marginal costs

$$p_{j_t} = m_{j_t} m c_{j_t}$$

• Markup is a function of the *average* price elasticity of demand

$$m_{j_t} = rac{\overline{\xi}_{j_t}}{\overline{\xi}_{j_t}-1}$$


• Output price is a markup over marginal costs

$$p_{j_t} = m_{j_t} m c_{j_t}$$

• Markup is a function of the average price elasticity of demand

$$m_{j_t} = \frac{\xi_{j_t}}{\overline{\xi}_{j_t}-1}$$

where

- ↑ incomes $\Rightarrow \downarrow$ price elasticity \Rightarrow ↑ markups

- ↑ productivity $\Rightarrow \downarrow$ prices $\Rightarrow \downarrow$ price elasticity $\Rightarrow \uparrow$ markups
- ↑ fraction of high-skilled \Rightarrow ↑ high-skilled cons. share \Rightarrow ↑ markups

(income channel)

(price channel)

(composition channel)

• Output price is a markup over marginal costs

$$p_{j_t} = m_{j_t} m c_{j_t}$$

• Markup is a function of the average price elasticity of demand

$$m_{j_t} = rac{\overline{\xi}_{j_t}}{\overline{\xi}_{j_t} - 1}$$

where

$$\overline{\xi}_{j_t} = \underbrace{\omega_{H,j_t}}_{\text{High-skilled cons. share price elast.}} + \underbrace{\omega_{L,j_t}}_{\xi_{L,j_t}} \xi_{L,j_t}$$

- Firms choose better quality for high markup varieties
- Market clearing

Taking the model to the data

>>> TAKING THE MODEL TO THE DATA

- Two-step procedure to match trends over 1980 and 2015
 - 1. Estimate parameters

 Parameters and Targeted moments

>>> TAKING THE MODEL TO THE DATA

- Two-step procedure to match trends over 1980 and 2015
 - 1. Estimate parameters

 Parameters and Targeted moments
 - 2. Match trends

Exogenous forces

- Neutral tech. change
- Skill-biased tech. change
- Fixed costs
- High-skilled share

Targets

- $\Rightarrow \quad {\sf Relative \ price \ of \ services} \, + \, {\sf Aggregate \ markup}$
- \Rightarrow Skill premium
- \Rightarrow Rel. number of services firms + HS income share
- Exogenous trends Targeted trends Nontargeted trends

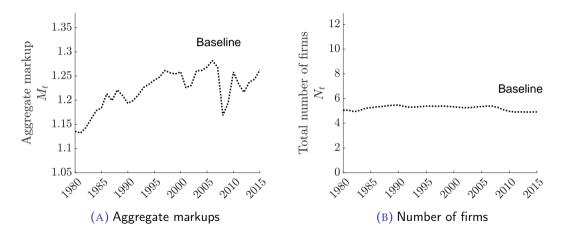
>>> TAKING THE MODEL TO THE DATA

- Two-step procedure to match trends over 1980 and 2015
 - 1. Estimate parameters

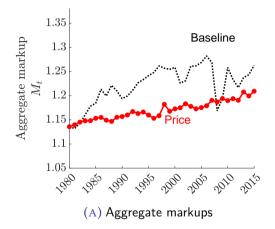
 Parameters and Targeted moments
 - 2. Match trends

Exogenous forces

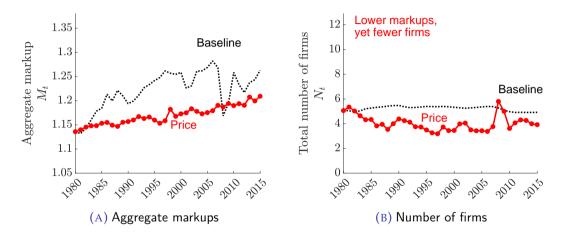
- Neutral tech. change
- Skill-biased tech. change
- Fixed costs
- High-skilled share

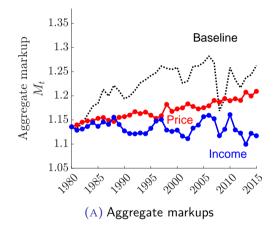

Targets

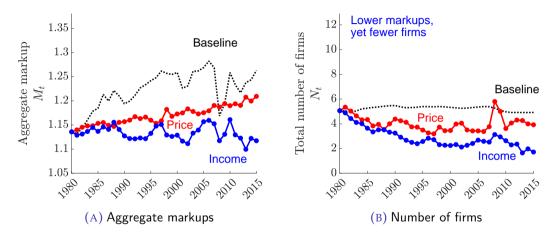
- $\Rightarrow \quad {\sf Relative \ price \ of \ services} \ + \ {\sf Aggregate \ markup}$
- \Rightarrow Skill premium
- \Rightarrow Rel. number of services firms + HS income share
- Exogenous trends Targeted trends Nontargeted trends

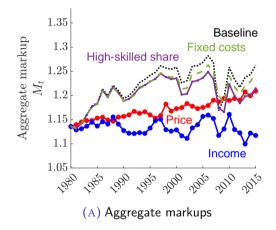

• Experiments

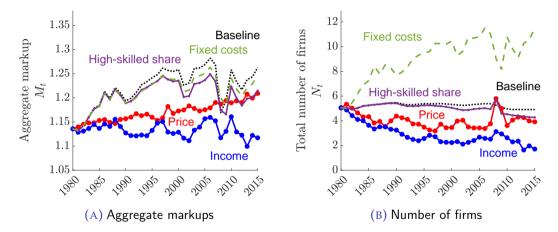
- 1. Set neutral productivity to keep prices of goods and services constant at 1980 values
- 2. Set skill-biased productivity to keep incomes constant at 1980 values
- 3. Set fixed costs constant at their 1980 values


Counterfactual experiments


[13/20]


• Price elasticity increasing in prices \Rightarrow Consumers want fewer goods \Rightarrow Goods markups decline


Price elasticity increasing in prices ⇒ Consumers want fewer goods ⇒ Goods markups decline


 Price elasticity decreasing in income ⇒ Consumers want fewer services ⇒ Services markups decline

 Price elasticity decreasing in income ⇒ Consumers want fewer services ⇒ Services markups decline

• Lower barriers to entry \Rightarrow More firms, yet little impact on markups

- Lower barriers to entry \Rightarrow More firms, yet little impact on markups
- Entry costs are stronger with Cournot competition

 Markups with Cournot

Eliciting demand elasticities: Online experiment -> Skip to Conclusion

>>> DO PRICE ELASTICITIES OF DEMAND FALL WITH INCOME?

- Online survey designed to capture individuals' perception of the impact of changes in prices on their purchase of goods and services
- Cover 24 categories of goods and services following CEX structure

>>> DO PRICE ELASTICITIES OF DEMAND FALL WITH INCOME?

- Online survey designed to capture individuals' perception of the impact of changes in prices on their purchase of goods and services
- Cover 24 categories of goods and services following CEX structure
- 607 consumers across the U.S. selected through ResearchMatch (between March and May 2022)
 - Median time to complete survey: 14min (average: 54min)
 - Representative sample in terms of gender, age, race, educational attainment, marital status, employment status, home ownership, household income
 Sample characteristics

>>> SURVEY SAMPLE CHARACTERISTICS

	Sample (%)	Population (%)
Female	51.93	51.64
18-25 y.o.	10.90	10.96
25-35 y.o.	17.92	17.91
35-45 y.o.	16.60	16.61
45-55 y.o.	16.29	16.26
55-65 y.o.	17.02	17.01
White	74.37	74.22
Black	12.24	12.28
Asian	5.91	5.99
No college degree	67.98	68.21
Bachelor's degree	20.06	19.95
Married	51.20	51.07
Single	29.56	29.62
Employed	63.46	63.47
Unemployed	2.84	2.85
Owner with mortgage	43.96	43.95
Owner without mortgage	25.93	25.92
Household income j 40k	22.90	22.88
Household income \in [40k, 80k)	27.68	27.66
Household income \in [80k, 120k)	20.10	20.09

Source: Statistics for the U.S. population are taken from the 2019 Current Population Survey.

>>> SURVEY QUESTIONS

- Demographic and spending questions
- Experiments: "Suppose you spent \$x on the following items in any given y. If the same items you purchased in the past now cost \$1.2x, how much would you now be willing to spend?"
 - Five options: $\{0.9x, 1.0x, 1.1x, 1.2x, 1.3x\}$

 \Rightarrow Price elasticity of demand > 1, = 1, \in (0, 1), = 0, and < 0

>>> DISTRIBUTION OF PRICE ELASTICITIES

• Highly elastic categories

Category	Avg. spend. (yearly, US\$)	% with ξ = 0	% with $\xi \in (0, 1)$	% with $\xi=1$	% with $\xi > 1$
Furniture	436	9.25	8.38	28.43	50.54
Appliances	382	12.24	8.43	24.57	50.43
Audio and visual equipment	613	8.33	12.58	23.83	49.96
Alcohol	602	12.72	9.68	22.52	47.54
Other lodging expenses out of town	1,493	14.74	7.74	26.34	44.31
Apparel	1,616	11.49	7.88	31.21	43.92
Entertainment, hobbies, pets, and toys	879	11.43	13.33	28.92	42.01
Public transportation	313	23.06	18.84	10.70	36.09
Food away	2,036	16.04	7.33	34.02	34.92
Tobacco	484	4.74	19.32	21.35	32.21
Child care, preschool tuition	1,110	29.03	7.65	18.50	27.86
Housekeeping expenses	1,893	19.40	15.70	30.68	27.22
Vehicle purchases, repairs, leases	1,585	20.62	17.76	28.04	26.81
House maintenance and repairs	1,295	22.97	7.98	35.89	26.29

Note: The price elasticities of demand are for individuals who reported positive expenditures on that category.

• Inelastic categories

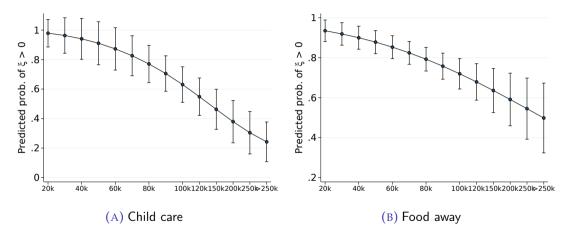
>>> DISTRIBUTION OF PRICE ELASTICITIES

• Highly elastic categories

• Inelastic categories

Category	Avg. spend. (yearly, US\$)	% with $\xi = 0$	% with $\xi \in (0, 1)$	$rac{6}{\xi}$ with $\xi = 1$	% with $\xi > 1$
Mortgage payments and rent	13,747	50.54	4.79	20.53	13.46
Food at home	4,704	46.00	13.15	17.64	10.22
Home insurance	2,717	43.46	13.13	17.48	11.95
Health insurance	5,065	42.30	15.11	20.09	11.61
Utilities	4,694	41.22	16.63	21.64	7.72
Vehicle insurance	3,918	41.21	16.77	16.31	17.63
Gasoline	3,490	37.72	16.76	20.77	13.31
Medical and dental services, drugs	3,629	34.53	16.42	23.16	16.93
Personal insurance	5,032	34.24	13.47	24.69	21.57

Note: The price elasticities of demand are for individuals who reported positive expenditures on that category.

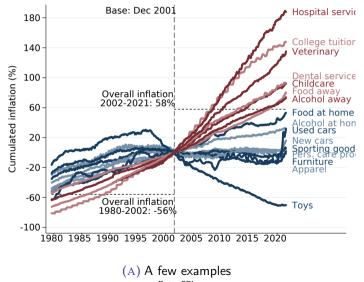

>>> ELASTICITIES ACROSS INCOME: EMPIRICAL STRATEGY

- Estimate LPM/Probit models: $\xi_{ij} = \alpha + \beta e_i + \gamma z_i + \varepsilon_{ij}$ Estimated $\hat{\beta}$
 - $\xi_{ij} = \begin{cases} 1 & \text{if (a) demand is elastic} \\ & (b) \text{ demand is inelastic} \\ 0 & \text{otherwise} \end{cases}$
 - e_i: household income
 - z_i : age, employment status, gender, household size, industry of employment, occupation, race, relationship status

>>> ELASTICITIES ACROSS INCOME: EMPIRICAL STRATEGY

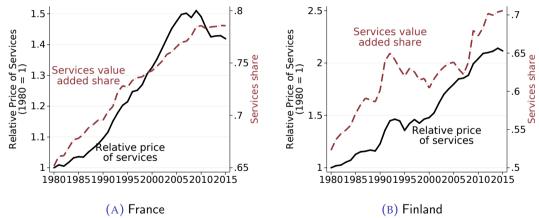
- Estimate LPM/Probit models: $\xi_{ij} = \alpha + \beta e_i + \gamma z_i + \varepsilon_{ij}$ Estimated $\hat{\beta}$
 - $\xi_{ij} = \begin{cases} 1 & \text{if (a) demand is elastic} \\ & (b) \text{ demand is inelastic} \\ 0 & \text{otherwise} \end{cases}$
 - e_i: household income
 - z_i : age, employment status, gender, household size, industry of employment, occupation, race, relationship status
- Predicted probabilities of (a) adjusting demand vs. (b) not adjusting demand for different values of income e_i keeping z_i as given

>>> WHO IS MORE LIKELY TO ADJUST DEMAND IN RESPONSE TO A PRICE INCREASE?

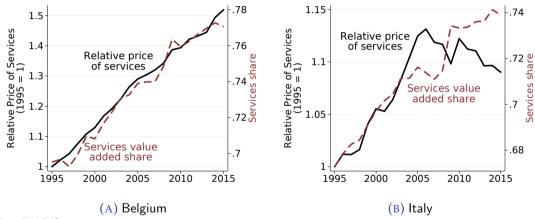

- Similar results for food at home, apparel, public transportation, vehicle insurance, medical and dental services, drugs and medical supplies, health
 insurance, school and college tuition and related expenses, personal insurance, audio and visual equipment and services, and vehicle purchases,
 maintenance and repairs, leases and rental charges
- 95% CIs are for the point estimates

>>> CONCLUDING REMARKS

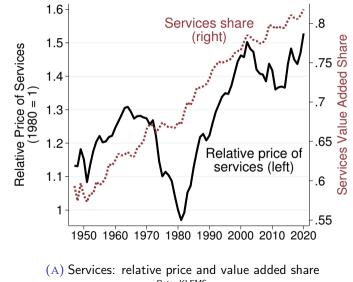
- Rise in markups driven by services sector
 - Reallocation of economic activity and faster increase in services markups relative to goods
- Standard forces of structural change explain rise of markups
 - Preferences play an important role in determining markups
 - Move away from CES \Rightarrow New channels emerge
 - Markups can increase without a decline in competition (number of firms)
 - Consumers are better off even if markups are higher Welfare
- Rising incomes explain the bulk of the increase in markups
 - Change in relative prices explain half of the increase in markups
 - Different policy implications than current view?


Thank you

Appendix

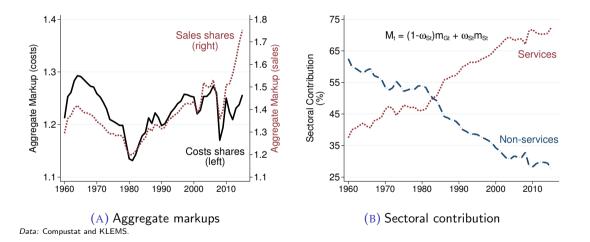

Data: CPI.

>>> STRUCTURAL CHANGE ACROSS EUROPEAN COUNTRIES

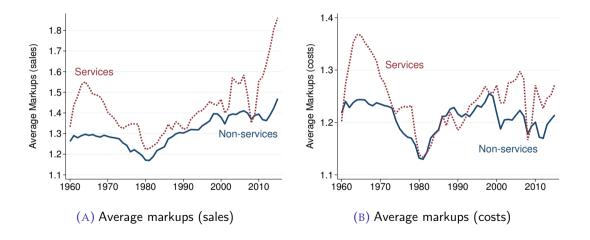


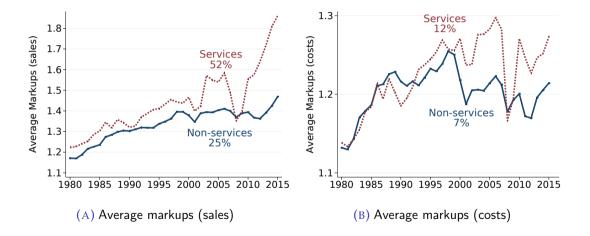
Data: EUKLEMS.

>>> STRUCTURAL CHANGE ACROSS EUROPEAN COUNTRIES



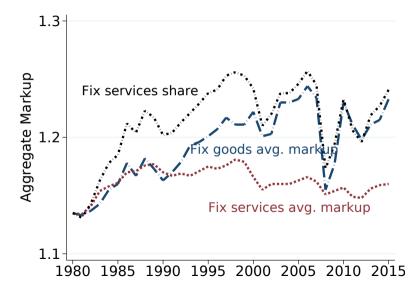
Data: EUKLEMS.

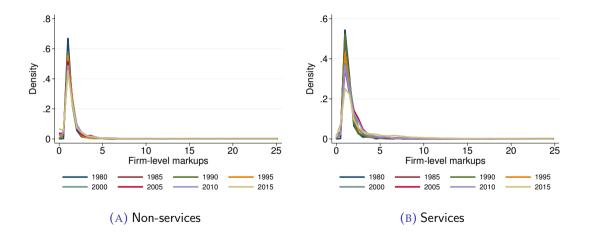



Data: KLEMS.

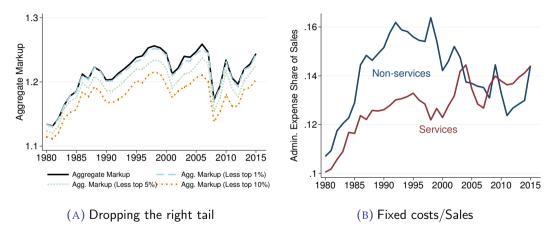
>>> The rise in markups since 1960 • Back to slide

>>> The rise of markups in services since 1960 · Back to slide




• Decompose change in markups

$$\begin{split} M_{2015} - M_{1980} &= \left(\frac{\varpi_{G_{1980}} + \varpi_{G_{2015}}}{2}\right) \left(\overline{m}_{G_{2015}} - \overline{m}_{G_{1980}}\right) & \text{Non-services avg. markup (28\% / 20\%)} \\ &+ \left(\frac{\varpi_{S_{1980}} + \omega_{S_{2015}}}{2}\right) \left(\overline{m}_{S_{2015}} - \overline{m}_{S_{1980}}\right) & \text{Services avg. markup (65\% / 72\%)} \\ &+ \left(\frac{\overline{m}_{S_{2015}} - \overline{m}_{G_{2015}} + \overline{m}_{S_{1980}} - \overline{m}_{G_{1980}}}{2}\right) \left(\omega_{S_{2015}} - \omega_{S_{1980}}\right) & \text{Services share (7\% / 8\%).} \end{split}$$

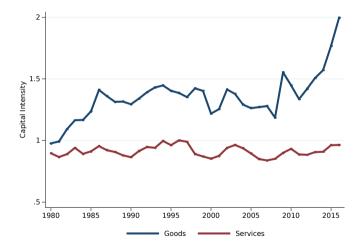

• Experiments over time

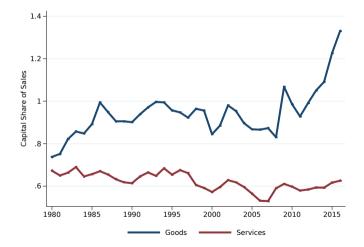
>>> The distribution of markups $\ {}^{*\text{Back to slide}}$

>>> NOT THE SUPERSTARS, NOR THE FIXED COSTS ***** BACK TO SLIDE

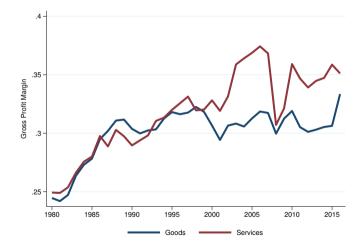
Data: Compustat.

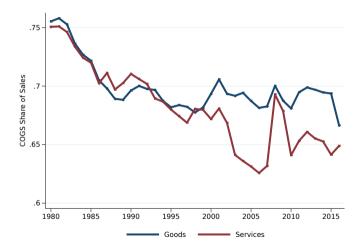
Correlation coefficients for the 1980-2015 change in markups, sales, and cost shares


	Δ Markup,	Δ Markups,
	Δ Sales share	Δ Fixed costs share
Aggregate	-0.0850	-0.0270
Non-services	-0.0467	0.0343
Services	-0.1028	-0.0464

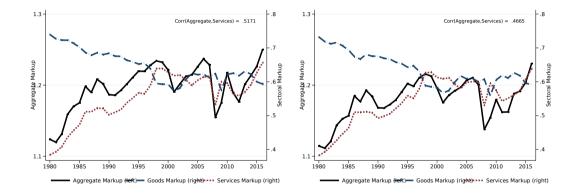

Data: Compustat.

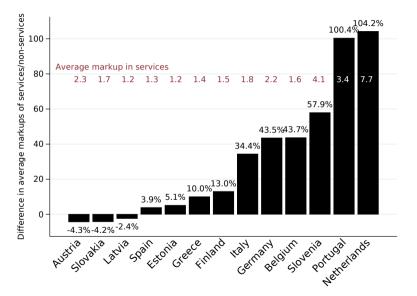
>>> The rise of markups in services $\ {}^{*}$ back to slide

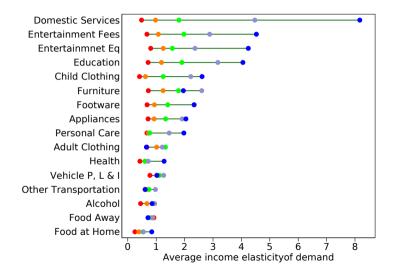

	Non-services			Services		
	1980	2015	Δ	1980	2015	Δ
Average markups (cogs)	1.13	1.21	7.3%	1.14	1.27	11.9%
Capital goods	1.12	1.24	10.9%			
Consumption goods	1.19	1.67	40.5%			
Intermediate goods	1.12	1.13	0.4%			
Consumer services				1.19	1.29	8.6%
Producer services				1.06	1.20	12.6%


Data: Compustat and KLEMS.

>>> GROSS PROFIT MARGIN ACROSS SECTORS $\ {}^{\bullet}$ Back to slide




>>> FIRMS ARE OTHERWISE SIMILAR \cdot Back to slide


	Firm-level markups (in logs)			
	Non-services	Services		
	(1)	(2)		
Capital share	0.028***	0.017***		
	(0.007)	(0.005)		
Intangible capital share	0.146***	0.009		
	(0.023)	(0.010)		
Cogs share	-1.072***	-1.228***		
	(0.093)	(0.055)		
Fixed cost share	0.126*	0.156***		
	(0.074)	(0.028)		
Time FE	Yes	Yes		
Observations	97,351	74,197		
Adjusted R ²	0.732	0.847		

Note: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Firms are weighted by their cost shares. Data is taken from Compustat for the 1980-2015 period.

>>> SECTORAL CONTRIBUTION WITHOUT SUPERSTARS * BACK TO SLIDE

Appendix: Model

>>> DIRECT UTILITY • BACK TO SLIDE

$$u(\boldsymbol{c}_{G_t}, \boldsymbol{c}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}) = \psi \left(\frac{\widehat{C}_t - 1}{\widetilde{C}_{G_t}^{\lambda} \widetilde{C}_{S_t}^{1-\lambda}} \right)^{(1+\gamma)}$$

•
$$\hat{C}_{t} = \sum_{j=G,S} \phi_{j} \int_{\mathcal{N}_{j_{t}}} c_{j_{t}}(\omega) d\omega$$
 Agg. value of cons.
• $\tilde{C}_{j_{t}} = \left(\int_{\mathcal{N}_{j_{t}}} \left[\frac{c_{j_{t}}(\omega)}{q_{j_{t}}(\omega)^{\delta}} \right]^{\frac{1+\gamma}{\gamma}} d\omega \right)^{\frac{\gamma}{1+\gamma}}$ Quality-adjusted composite of commodity j

•
$$\psi = (1+\gamma)^{-1} \lambda^{\lambda(1+\gamma)} (1-\lambda)^{(1-\lambda)(1+\gamma)} > 0$$

• Special case: Two-sector CES with quality

PROPOSITION

Assume $\phi_j = 0$, $\gamma < -1$, and $\delta < 0$ for $j = \{G, S\}$. Then, these preferences collapse to the two-sector CES preferences with quality and $(-\gamma)$ as the sector-specific price elasticity of demand, where

$$u(\boldsymbol{c}_{G_t}, \boldsymbol{c}_{S_t}, \boldsymbol{q}_{G_t}, \boldsymbol{q}_{S_t}) = \psi \left[C_{G_t}^{\lambda} C_{S_t}^{(1-\lambda)} \right]^{(\widehat{\gamma}-1)}$$

 $- C_{j_t} = \left(\int_{\mathcal{N}_{j_t}} \left[c_{j_t}(\omega) q_{j_t}(\omega)^{\widehat{\delta}} \right]^{\frac{\widehat{\gamma} - 1}{\widehat{\gamma}}} d\omega \right)^{\frac{\gamma}{\widehat{\gamma} - 1}}$

Quality-adjusted composite of commodity j

- $\widehat{\gamma}=-\gamma>1$ and $\widehat{\delta}=-\delta>0$

• Choose capital and labor to minimize total costs (net of quality)

$$mc_{j_{t}} = \frac{W_{L_{t}}}{Z_{j_{t}}} \left[(\alpha x_{t})^{\frac{1}{1-\iota}} \left(\frac{W_{H_{t}}}{W_{L_{t}}} \right)^{\frac{\iota}{\iota-1}} + (1-\alpha)^{\frac{1}{1-\iota}} \right]^{\frac{\iota-1}{\iota}}$$

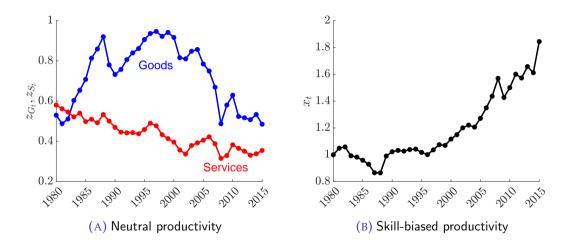
- An increase in TFP decreases the firm's marginal cost
- Rise of skill premium prevents marginal costs from dropping to 0
- Skill-biased technical change decreases marginal cost since $\iota > 0$ (somewhat subs)

>>> MARKET CLEARING CONDITIONS \cdot Back to slide

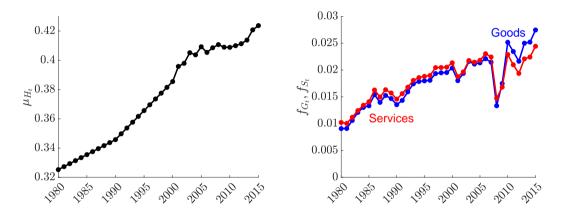
• Labor markets clear

$$\mu_{H_t} = \int_0^{N_{G_t}} h_{G_t}(\omega) \, \mathrm{d}\omega + \int_0^{N_{S_t}} h_{S_t}(\omega) \, \mathrm{d}\omega$$
$$\mu_{L_t} = \int_0^{N_{G_t}} \ell_{G_t}(\omega) \, \mathrm{d}\omega + \int_0^{N_{S_t}} \ell_{S_t}(\omega) \, \mathrm{d}\omega$$

• Aggregate nonlabor earnings are the sum of operating firms' fixed and entry costs

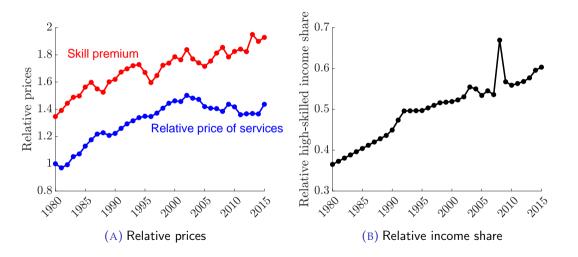

$$\Lambda_t = \int_0^{N_{G_t}} q_{G_t}(\omega)^{\vartheta} d\omega + \int_0^{N_{S_t}} q_{S_t}(\omega)^{\vartheta} d\omega + N_{G_t} f_{G_t} + N_{S_t} f_{S_t}$$

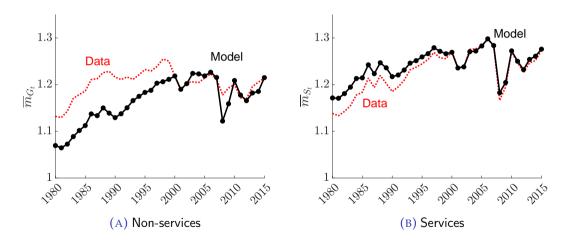
• Quality tightly linked to markup


$$\frac{\kappa q_{j_t}^{\vartheta}}{\rho y_{j_t}} = \frac{\overline{\sigma}_t}{\vartheta} \frac{(m_{j_t} - 1)}{m_{j_t}}$$

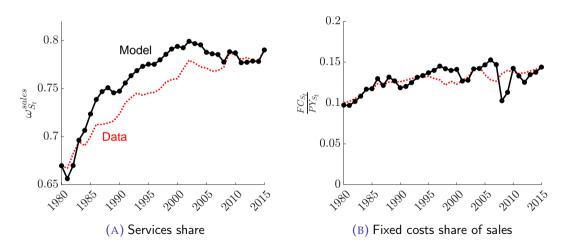
Appendix: Quantitative analysis

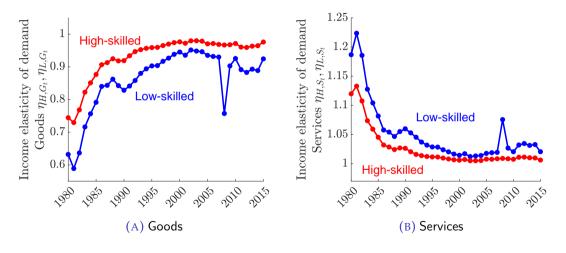
				Model	Data
Parameter	Description	Value	Identification	1980, 2015	1980, 2015
Preferences					
λ	Indirect utility's weight on goods	0.181	Services share	0.670, 0.790	0.670, 0.790
γ	Exponent in indirect subutility	17.359	Services share		
ΦG	Choke price of goods	7.725	Average goods markup	1.215	1.214
Φs	Choke price of services	12.780	Average services markup	1.276	1.273
δ	Quality-specific utility exponent	0.072	Normalization	1.000	
Technology					
α	High-skilled weight	0.465	Skill premium	1.347, 1.928	1.347, 1.928
ι	Elasticity of substitution between high and low-skilled	0.400	Exogenous		
×t	Skilled-biased prod. in 1980, 2015	1.000, 1.844	Normalization, Skill premium		
z_{G_t}	TFP in goods sector in 1980, 2015	0.530, 0.485	Aggregate markup	1.136, 1.263	1.136, 1.263
z _{St}	TFP in services sector in 1980, 2015	0.580, 0.355	Relative price of services	1.000, 1.437	1.000, 1.437
Fixed Costs					
f _{Gt}	Entry costs in goods sector in 1980, 2015	0.009, 0.027	High-skilled income share	0.365, 0.603	0.365, 0.603
f_{S_t}	Entry costs in services sector in 1980, 2015	0.010, 0.024	Rel. number of service firms	4.059, 5.180	4.059, 5.180
ĸ	Quality cost parameter (level)	0.018	Quality costs/sales in services	0.144	0.144
θ	Quality cost parameter (exponent)	2.000	Exogenous		
Measure			0		
μ_{H_t}	Share of high-skilled households in 1980, 2015	0.325, 0.424	Empl. in high-skilled occupations	0.325, 0.424	0.325, 0.424

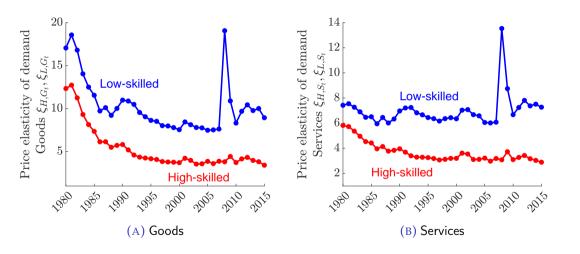

>>> EXOGENOUS TRENDS < BACK TO SLIDE

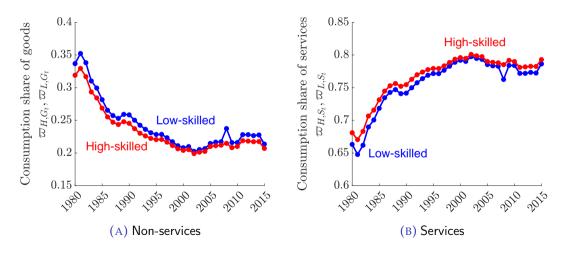


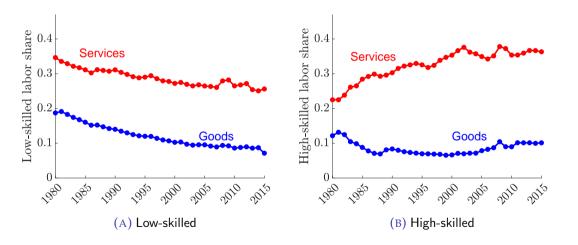
(A) High-skilled share


(B) Fixed costs

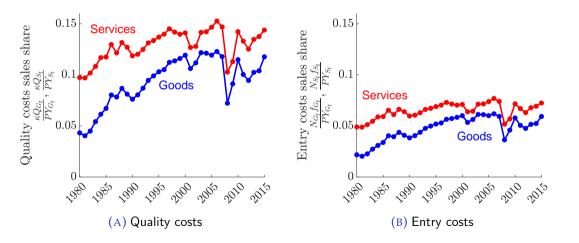

>>> TARGETED TRENDS: PRICES
 <


>>> NONTARGETED TRENDS: SERVICES SHARE AND COSTS




Income elasticities in the data

>>> PRICE ELASTICITIES OF DEMAND \cdot Back to slide



>>> NONTARGETED TRENDS: SERVICES CONSUMPTION SHARES

>>> $FIXED COSTS \cdot BACK TO SLIDE$

>>> Welfare impacts of the rise in markups $\$ -back to slide

• How much would consumers in 1980 be willing to pay in order to have the utility level they enjoy in 2015?

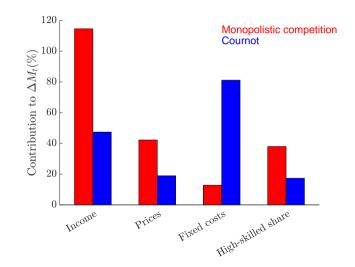
>>> Welfare impacts of the rise in markups $\$ -back to slide

• How much would consumers in 1980 be willing to pay in order to have the utility level they enjoy in 2015?

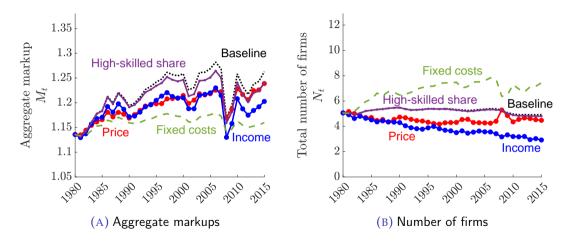
	High-skilled	Low-skilled
Equivalent variation $(\varepsilon_i^{ev}, \%)$	136.1	20.4

>>> Welfare impacts of the rise in markups $\$ -back to slide

• How much would consumers in 1980 be willing to pay in order to have the utility level they enjoy in 2015?


	High-skilled	Low-skilled
Equivalent variation $(\varepsilon_i^{ev}, \%)$	136.1	20.4

- Are households better off in the economies with lower markups?
 - How much would consumers be willing to pay to live in these low-markup economies?


	High-skilled	Low-skilled
Prices constant at 1980 values (ε_i^{ev} , %)	-8.6	-12.5
Incomes constant at 1980 values (ε_i^{ev} , %)	84.1	3.5
High-skilled share constant at 1980 values (ε_i^{ev} , %)	18.3	50.0
Fixed costs constant at 1980 values (ε_i^{ev} , %)	15.5	44.9

>>> MARKUPS WITH COURNOT \cdot Back to slide

• Restimate parameters: Choke price of services \uparrow and of goods \downarrow ($\phi_S/\phi_G \approx 7$ vs. 1.7)

>>> MARKUPS AND NUMBER OF FIRMS WITH COURNOT \cdot Back to slide

Appendix: Survey

>>> ESTIMATES OF β ·Back to slide

	Price elasticity of demand							
Specification	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Elastic (LPM)	-0.020*	-0.034***	-0.014*	-0.037**	-0.024**	-0.027**	-0.027*	-0.079**
	(0.011)	(0.010)	(0.008)	(0.014)	(0.012)	(0.012)	(0.014)	(0.034)
Observations	581	555	476	86	513	444	428	52
Adjusted R ²	0.059	0.126	0.190	0.478	0.144	0.115	0.120	0.465
Elastic (Probit)	-0.053*	-0.125***	-0.083**	-0.177***	-0.073**	-0.079**		-0.386*** -
	(0.029)	(0.033)	(0.036)	(0.050)	(0.032)	(0.031)	(0.038)	(0.121)
Observations	581	555	476	86	513	444	428	52
Adjusted R ²	0.044	0.125	0.207	0.446	0.121	0.094	0.093	0.458
Inelastic (LPM)	0.019*	0.021***	0.014**	0.014	0.015	0.017		0.029
	(0.010)	(0.008)	(0.007)	(0.010)	(0.011)	(0.012)	(0.013)	(0.027)
Observations	581	555	476	86	513	444	428	52
Adjusted R ²	0.040	0.111	0.108	0.521	0.129	0.074	0.082	0.218
Inelastic (Probit)	0.051*	0.105***	0.111** -	0.098*	0.049		0.043	0.042
	(0.028)	(0.033)	(0.044)	(0.053)	(0.031)	(0.033)	(0.036)	(0.105)
Observations	581	555	476	86	513	444	428	46
Adjusted R ²	0.030	0.154	0.198	0.521	0.114	0.067	0.066	0.188


Note: The estimated coefficients are for the effect of household income on the price elasticity of demand for each specification. *Elastic* stands for the case in which the price elasticity of demand is positive, while *lnelastic* stands for the case in which the price elasticity of demand is equal to 0. The regressions are estimated for each category of goods and services separately and include the following set of controls: age, employment status, gender, household size, industry, occupation, race, relationship status. Each column is for a category: (1) food at home; (2) food away; (3) apparel; (4) public transportation; (5) vehicle insurance; (6) medical and dental services, drugs and medical supplies; (7) health insurance; (8) child care, preschool tuition, or care of elderly. Robust standard errors in parentheses. **** p < 0.01, ** p < 0.05, * p < 0.1.

>>> ESTIMATES OF β ·Back to slide

	Price elasticity of demand						
Specification	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Elastic (LPM)	-0.032**	-0.054***	-0.012	-0.019	-0.016	-0.028***	-0.037***
	(0.015)	(0.013)	(0.016)	(0.012)	(0.011)	(0.009)	(0.011)
Observations	105	270	76	370	279	383	464
Adjusted R ²	0.300	0.162	0.607	0.168	0.153	0.135	0.143
Elastic (Probit)	-0.120**	-0.160*** -	-0.045	-0.067*	-0.069*	-0.128***	-0.125***
	(0.059)	(0.042)	(0.066)	(0.040)	(0.042)	(0.038)	(0.035)
Observations	105	270	76	370	279	383	464
Adjusted R ²	0.260	0.130	0.620	0.159	0.171	0.161	0.134
Inelastic (LPM)	0.009	0.034***	-0.016**	0.004	0.012*	0.004	0.024**
	(0.013)	(0.012)	(0.008)	(0.007)	(0.007)	(0.005)	(0.009)
Observations	105	270	76	370	279	383	464
Adjusted R ²	0.342	0.144	0.163	0.118	0.151	0.085	0.068
Inelastic (Probit)	0.051	0.117***	-0.294***	0.019	0.104**	0.034	0.094***
	(0.060)	(0.044)	(0.088)	(0.039)	(0.050)	(0.044)	(0.032)
Observations	`105 ´	270	` 54 ´	` 370 ´	`279 ´	`383 ´	464
Adjusted R ²	0.321	0.132	0.385	0.206	0.325	0.171	0.075

Note: The estimated coefficients are for the effect of household income on the price elasticity of demand for each specification. Elastic stands for the case in which the price elasticity of demand is positive, while *lnelastic* stands for the case in which the price elasticity of demand is equal to 0. The regressions are estimated for each category of goods and services separately and include the following set of controls: age, employment status, gender, household size, industry, occupation, race, relationship status. Each column is for a category: (9) school and college tuition and related expenses; (10) personal insurance; (11) tobacco and other smoking products; (12) other lodging expenses out of town; (13) appliances; (14) audio and visual equipment and services; (15) vehicle purchases, maintenance and repairs, leases and rental charges. Robust standard errors in parentheses. *** p<0.01, ** p<0.01, ** p<0.01.

>>> WHO IS MORE LIKELY *not* TO ADJUST DEMAND IN RESPONSE TO A PRICE INCREASE? • BACK TO SLIDE

Similar results for food at home, apparel, personal insurance, appliances, and vehicle purchases, maintenance and repairs, leases and rental charges.

95% Cls are for the point estimates